Search Results(13685)

2013-07-03
PIER
Vol. 140, 781-794
Millimeter Wave Subharmonic Mixer Implementation Using Graphene Film Coating
George Roberto Hotopan , Samuel Ver-Hoeye , Carlos Vazquez-Antuna , Andreea Hadarig , Rene Camblor-Diaz , Miguel Fernandez-Garcia and Fernando Las Heras Andres
In this work, a subharmonic frequency mixer for millimeter wave applications has been designed. The mixing and multiplication phenomena are simultaneously achieved via a nonlinear component consisting in a microstrip line gap covered by a graphene film coating. The circuit structure is made up of various filters, which have been optimized to ensure high port-to-port isolation. The nonlinear behavior of the subharmonic frequency mixer has been experimentally evaluated within the 39-40.5 GHz RF frequency band. The frequency downconversion is achieved by mixing the RF signal with the second harmonic component of a 17.9 GHz LO signal. Conversion losses are minimized by generating a return path for IF, through the use of a quarter wavelength open-ended stub.
2013-07-02
PIER C
Vol. 41, 163-174
Design of a Compact Wideband MIMO Antenna for Mobile Terminals
Xing-Xing Xia , Qing-Xin Chu and Jian-Feng Li
A new broadband multiple-input multiple-output (MIMO) antenna with good isolation and compact size is proposed. The proposed antenna consists of two G-shaped elements in the upper layer and two inverted L protrude branches and a T slot etched in ground which is used to reduce the mutual coupling. This planar antenna has a bandwidth of 100% with |S11| ≤ -10 dB from 2.26 to 6.78 GHz. The value of isolation between the two antenna elements is more than 22.5 dB in the whole band. The experimental results verify the simulations.
2013-07-02
PIER
Vol. 140, 761-779
Body-of-Revolution-Enhanced Imaging in Ultra-Wideband SAR
Fu-Lai Liang , Qian Song , Hanhua Zhang , Tian Jin and Zhi-Min Zhou
For ultra-wideband synthetic aperture radar (UWB SAR), there often exist a lot of clutters in the image, and the weak targets are easy to be masked by them. However, using the prior scattering knowledge of targets, enhanced imaging can be realized and beneficial improvements in image quality and detection performance can be expected. In this paper, an enhanced imaging method for body of revolution (BOR) has been researched. Since the BOR target has the unique feature of aspect-invariant characteristic, the aspect scattering entropy (ASE) is proposed to describe the diversity of aspect scattering and used in the BOR-enhanced imaging method. Then the application of the proposed method in landmine detection is discussed. The experimental results show that the BOR targets are effectively enhanced and the clutters are surpressed and thus the probability of landmine detection increases under the same false alarm rate.
2013-07-02
PIER
Vol. 140, 733-759
Three-Dimensional Micromotion Signature Extraction of Rotating Targets in OFDM-LFM MIMO Radar
Ying Luo , Qun Zhang , Cheng-Wei Qiu , Song Li and Tat Yeo
In monostatic radars systems, only the micromotion signatures projected onto the radar line-of-sight (LOS) can be observed from echoes. As a result, the obtained micromotion signatures (e.g., the radius length of rotation) are sensitive to the radar LOS. In this paper, we propose a method for the accurate estimation of three-dimensional (3-D) micromotion signature with the orthogonal frequency division multiplexing - linear frequency modulation (OFDM-LFM) multi-input multi-output (MIMO) radar technique, which makes use of the advantages of the multi-view of MIMO radar systems and the broad bandwidth of the OFDM-LFM signals. In the proposed method, the Hough transform and Orthogonal Matching Pursuit (OMP) algorithm are introduced to extract the m-D curve features from echoes, and then the 3-D micromotion signatures of the rotating targets are obtained by solving nonlinear multivariable equation systems. The extracted 3-D micromotion signatures are no longer sensitive to the radar LOS, and can provide realistic feature information for target recognition. Simulations are given to validate the effectiveness of the proposed method.
2013-07-02
PIER
Vol. 140, 719-732
Far-Field Reconstruction from Near-Field Data Acquired via a Fast Spherical Spiral Scan: Experimental Evidences
Francesco D'Agostino , Flaminio Ferrara , Claudio Gennarelli , Rocco Guerriero and Massimo Migliozzi
A probe-compensated near-field - far-field (NF-FF) transformation with spherical spiral scanning, which makes possible to lower the number of needed measurements, as well as the time required for the data acquisition when characterizing quasi-planar antennas, is experimentally verified in this paper. Such a technique, based on the nonredundant representation of electromagnetic fields, has been achieved by properly applying the unified theory of spiral scans for nonspherical antennas and adopting a very flexible source modelling, formed by two circular "bowls" with the same aperture diameter but different bending radii. A two-dimensional optimal sampling interpolation formula allows one to reconstruct the NF data at any point on the measurement sphere and, in particular, at those required by the classical NF-FF transformation with spherical scanning. The reported NF and FF reconstructions, obtained from the nonredundant samples acquired on the spiral, assess the accuracy of the proposed technique.
2013-07-01
PIER B
Vol. 52, 405-423
Scattering Analysis for Ship Kelvin Wakes on Two-Dimensional Linear and Nonlinear Sea Surfaces
Rong-Qing Sun , Min Zhang , Chao Wang and Xiao-Feng Yuan
The ship Kelvin-wake models on two-dimensional (2-D) linear and nonlinear sea surfaces are combined with the second-order small-slope approximation method (SSA-II) to comparatively study the corresponding electromagnetic (EM) scattering characteristics. The nonlinear sea-surface models include the Choppy Wave Model (CWM) and the second-order Creamer model (Creamer (2)). Considering the limitations of using the ideal plane EM wave incident upon a rough sea surface of the limited size, the expressions of the scattered field and scattering amplitude are derived by utilizing the modified tapered incident field. Due to the fact that the nonlinear effects of Creamer (2) surfaces is obviously stronger than those of CWM surfaces, the bistatic normalized radar cross section (NRCS) calculated from Creamer (2) surfaces is significantly greater than that of its linear and CWM surfaces for scattering angles departing from the specular direction, and the backscattering coefficients from Creamer (2) surfaces are also the greatest except within quasi-specular (near vertical incidence) region. In addition, for the linear and nonlinear sea surfaces, the influences of different wind speeds and directions on scattering characteristics are also calculated and analyzed in detail. However, taking the ship Kelvin wakes into account, the corresponding scattering features are obviously distinct from those of the single linear and nonlinear sea surfaces. This helps to provide a basis to extract the related ship information through the scattering characteristics of ship Kelvin wakes. Also it shows that the small-slope approximation method is a very effective analysis method to deal with the EM scattering from the rough sea surface.
2013-07-01
PIER C
Vol. 41, 151-161
Novel Method to Detect and Recover the Keystrokes of Ps/2 Keyboard
Yu-Lei Du , Ying-Hua Lu and Jinling Zhang
Computer keyboards are often used to transmit confidential data such as passwords. The sensitive information such as keystrokes could be recovered by using the electromagnetic (EM) waves from the electronic components of the keyboard. In this paper, we have investigated the information leakage on the ground line of the PS/2 serial cable due to crosstalk and radiative coupling. The coupling principles are analyzed firstly. And then, through the experiments we found that the signals of keystrokes could leak to the ground line network which could then be detected on the other power outlets whose share the same electric line. Lastly, the eavesdropping experiments demonstrated that the keystrokes could be reproduced on the other places of the ground line network with no trace.
2013-06-30
PIER B
Vol. 52, 383-403
An UWB Fractal Antenna with Defected Ground Structure and Swastika Shape Electromagnetic Band Gap
Nagendra Kushwaha and Raj Kumar
In this paper, an ultra wideband antenna employing a defected ground structure is presented. The radiating element is a circular patch on which a fractal based geometry is inscribed in the form of slots and excited by a tapered feed-line for impedance matching. The antenna has an impedance bandwidth of 8.2 GHz (117% at centre frequency of 7 GHz) and a peak gain around 6 dB. To improve the impedance bandwidth and gain, a Swastika shape Electromagnetic band gap (EBG) structure is proposed. The unit cell of the proposed EBG has a compact size of 3 mm × 3 mm and is obtained by introducing discontinuities in the outer ring of the Cross-Hair type EBG. The stop band (-20 dB) achieved with this EBG is 3.6 GHz (7.5 GHz-11.1 GHz) which is 1.6 GHz more than that achieved by a standard mushroom-type EBG of the same size and same number of elements. After application of the proposed EBG, there is an improvement of 12% in the impedance bandwidth while the peak gain increases by about 2-3 dB. The radiation of the antenna shows a dumb-bell shaped pattern in the E-plane and Omni-directional pattern in the H-plane. All the measured results are in good agreement with simulated results.
2013-06-30
PIER M
Vol. 31, 215-229
Combined Method for Simulating Electron Spectrum of δ-Doped Quantum Wells in n-Si with Many-Body Corrections
Christian Castrejon-Martinez , Volodymyr V. Grimalsky , Luis Manuel Gaggero-Sager and Svetlana V. Koshevaya
The combined method to investigate the electron spectrum of single n-type d-doped quantum wells in silicon is proposed. It is based on computing the electron potential energy by means of the Thomas-Fermi method at finite temperatures; then the obtained electron potential energy is applied to the iteration procedure with solving the Schrodinger equations for the electron spectrum and the Poisson one for the potential energy. The many-body corrections to the electron spectrum in the quantum well also have been investigated. The combined method demonstrates a rapid convergence. It is shown that that the simple TF method gives a good approximation for the electron potential energy and for the total electron concentration within the well.
2013-06-29
PIER M
Vol. 31, 199-214
Conductor Fusing and Gapping for Bond Wires
Kenneth Chien-Ying Chen , Larry Kevin Warne , Yau Tang Lin , Robert L. Kinzel , Johnathon D. Huff , Michael B. McLean , Mark W. Jenkins and Brian M. Rutherford
In this paper, fusing of a metallic conductor is studied by judiciously using the solution of the one-dimensional heat equation, resulting in an approximate method for determining the threshold fusing current. The action is defined as an integration of the square of the wire current over time. The burst action (the action required to completely vaporize the material) for an exploding wire is then used to estimate the typical wire gapping action (involving wire fusing), from which gapping time can be estimated for a gapping current greater than a factor of two over the fusing current. The test data are used to determine the gapped length as a function of gapping current and to show, for a limited range, that the gapped length is inversely proportional to gapping time. The gapping length can be used as a signature of the fault current level in microelectronic circuits.
2013-06-28
PIER B
Vol. 52, 363-382
Reduction of Numerical Dispersion of Adi-FDTD Method with Quasi Isotropic Spatial Difference Scheme
Yilong Zhang , Donglin Su and Feijiao Liu
In this paper, the difference scheme of the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is replaced by the quasi isotropic (QI) spatial difference scheme to improve its numerical dispersion characteristics. The unconditional stability advantage of QI-ADI-FDTD is analytically proven and numerically verified. The numerical dispersion of the novel method can be dramatically reduced by choosing proper weighting factor. An example is simulated to demonstrate the accuracy and efficiency of the proposed method.
2013-06-28
PIER B
Vol. 52, 347-362
Mutual Coupling Calibration for Electromagnetic Vector Sensor
Lanmei Wang , Guibao Wang and Cao Zeng
A subspace self-calibration ESPRIT algorithm for mutual coupling across an electromagnetic vector sensor is proposed in this paper. By introducing an auxiliary array element, the mutual coupling is calibrated. The whole array's mutual coupling matrix can be obtained simultaneously. A mathematic model for mutual coupling across the six collocated antennas of an electromagnetic vector sensor is established. And the solution of mutual coupling matrix was transformed into the solution of several matrix elements. The Cramer-Rao Lower Bound (CRLB) is also derived in the end of this paper to verify the efficacy of the proposed algorithm. The simulation results demonstrate that this approach is correct and effective.
2013-06-28
PIER
Vol. 140, 681-717
The Design of an Optical Time Steered Antenna Based on a New Integrated True Time Delay Unit
Amedeo Capozzoli , Claudio Curcio and Giuseppe D'Elia
In the framework of wide-band and ultra wide-band array antennas, an Optical Time Steered Antenna (OTSA) is presented, by considering the design strategies of a new True Time Delay (TTD) Control Unit in the Beam Forming Network (BFN). The unit has high reliability, low crosstalk, low switching time and potential low cost, being based on a low cost technology. Furthermore, due to its compactness and modularity, it can be easily grouped with other ones to make a control unit of large arrays. Different strategies and working configurations of the TTD control unit are presented as a trade-off among hardware complexity, insertion loss reduction and beam control capability. The design of an OTSA prototype is discussed by considering a realistic model simulating the behavior of a real world antenna and accounting for unavoidable non-realities, such as random, periodic and systematic errors introduced by each device exploited in the OTSA as well as mutual coupling between radiating elements. An optimal trimming strategy, able to compensate at best for BFN errors and based on the use of suitably located trimmers, is presented. Among other cases, to enlighten the potentialities of the OTSA, an all optical architecture providing a difference beam squint free pattern is also proposed.
2013-06-27
PIER C
Vol. 41, 137-150
Compact Microstrip Dual-Mode Dual-Band Bandpass Filters Using Stubs Loaded Coupled Line
Xin Xu and Wen Wu
This paper presents two novel dual-mode dual-band bandpass filters (BPFs) by using stubs loaded coupled line. The analytical equations of their transmission poles and transmission ze-ros are given by the classical even-/odd-mode method. Design rules for two dual-band BPFs are al-so given, which shows the easily tuned passband frequency locations and in-band performance. As examples, two dual-mode dual-band BPFs, dual-band filter A with central frequencies (CFs) at 3.5/6.8 GHz and -3 dB fractional bandwidth (FBW) of 14%/10%, while dual-band filter B with CFs at 2.4/6.8 GHz and -3 dB FBW of 43%/16% are designed, fabricated and measured. Good agree-ment can be observed between the simulations and measurements. These two filters exhibit simple design procedures, simple physical topology, low insertion losses, good return losses, high isolation and compact sizes.
2013-06-27
PIER C
Vol. 41, 121-135
Bandwidth Improvement of a Compact Quadrature Hybrid Coupler with Harmonic Rejection Using Lumped Elements
Yu Ye , Ling-Yun Li , Jian-Zhong Gu and Xiao-Wei Sun
A compact quadrature hybrid coupler with harmonic suppression adopting lumped-element band-stop resonator is proposed aiming for bandwidth improvement. Conventionally, harmonic rejection is realized by three band-stop resonators in lumped hybrid design. The using of three band-stop resonators can realize better harmonic suppression while exhibiting narrower frequency response. So as to improve operation bandwidth performance, the number of band-stop resonator applied in this proposed topology is minimized to one. Trading off with acceptable reduction in harmonic rejection, the proposed hybrid can enlarge working bandwidth with fewer lumped devices. Detailed design and theoretical analysis are presented and the expressions of lumped elements with dependence of rejected harmonic frequency are obtained. To validate the analysis, three 2.45 GHz couplers are fabricated on an FR-4 printed circuit board. The experimental results exhibit 27.3%, 26.9% and 23.3% operation bandwidth with better than 16 dB, 17 dB, and 21 dB harmonic suppressions at 4.9 GHz, 6.1 GHz, and 7.35 GHz, respectively. Less than 0.8 dB amplitude imbalance and 2° phase error are achieved over the whole operation frequency for the all three couplers, which are matched well with theoretical analysis.
2013-06-27
PIER C
Vol. 41, 111-120
A Corner-Fed Square Ring Antenna with an L-Shaped Slot on Ground Plane for GPS Application
Bau-Yi Lee , Wen-Shan Chen , Yu-Ching Su and Fa-Shian Chang
This paper proposes a square ring patch antenna for GPS L1 band application. The square ring patch located on the center of an FR4 substrate was truncated a square to guide two resonant modes. The dimensions of the truncated square located on the center of the patch controls the antenna's frequency band. Larger truncated square creates longer resonant path that decreases the resonant band. To achieve the CP radiation patterns, the corner-fed method and a truncated L-shaped slot on the ground plane are applied. After the size of the truncated L-shaped slot is optimized, the currents of Eθ and Eφ are around 90° shifts that make the antenna's AR lower than 3 dB. By switching the positions of the feed point and the L-shaped slot, both RHCP and LHCP can be obtained individually. Beside the CP operation, the proposed design also has advantages of planar structure, simple design, low cost, and good performances.
2013-06-27
PIER Letters
Vol. 41, 77-86
Broadband CPW-Fed Circularly Polarized Antenna with an Irregular Slot for 2.45 GHz RFID Reader
Lu Chen , Xueshi Ren , Ying-Zeng Yin and Zedong Wang
A coplanar waveguide-fed slot antenna with wideband circular polarization characteristic is presented. The proposed antenna consists of an irregular slot with a stair-shaped edge and an L-shaped feed line. The stair-shaped edge can improve the circular polarization of the antenna. The simulated and measured results show that the antenna has an impedance bandwidth (VSWR < 2) about 1040 MHz (42%@2.47 GHz) and an axial ratio (AR) bandwidth (AR < 3 dB) about 640 MHz (25.8%@2.48 GHz) for 2.45 GHz RFID applications. The RHCP gain in the main radiation direction varies between 2.3 dBi and 3.8 dBi.
2013-06-27
PIER M
Vol. 31, 189-198
Simplified Modeling and Measurement Procedures for Electromagnetic Launchers Performances Evaluation
Hocine Menana
In this work, Simplified modeling and measurement procedures for capacitive driven electromagnetic launchers using magnetic armatures are presented. The modeling strategy is based on a successive solving of the circuit equation coupled to a 2D finite element (FEM) magnetostatic computation and the mechanical equation of the armature motion. This leads to a considerable time and memory space saving compared to a time domain magnetodynamic problem computation. The armature velocity is determined through the analysis of the time variation of the induced voltage, due to the armature remanent magnetization, in an auxiliary coil placed at the launcher extremity. The modelling and measurement strategies are implemented and tested on a laboratory developed coil-gun prototype. Modelling and measurement results are provided.
2013-06-27
PIER
Vol. 140, 653-680
Circularly Arced Koch Fractal Multiband Multimode Monopole Antenna
Daotie Li and Jun-Fa Mao
Circularly arced Koch fractal curve (CAKC) is originally proposed. Then, a novel wire dipole is formed with Ki-iterated CAKC. The dipole is experimentally studied for fractal electrical characteristics revealing. It manifests many unique properties, such as multiband resonance at odd times of half-wavelength. In particular, it unprecedentedly presents normal mode (0.5.λ) and axial mode (1.5.λ) simultaneously. Thus, K2 CAKC wire is configured into folded monopole with circular disc ground for omni-directional and directive radiation. Five matched bands (S11≤-10 dB) are obtained within 1 GHz-10 GHz, of which f1=1.31 GHz, f2=3.14 GHz, f3=3.63 GHz, f4=4.65 GHz, and f5=7.71 GHz. Compared with conventional wire monopole (0.25.λ), this fractal monopole shows 31% height reduction. It has dipole-like patterns at f1 and f2, endfire patterns at f3 and f4 with high gain (10 dBi), and off-endfire patterns at f5. Moreover, the fractal antenna possesses compactness, lightweight, simplicity, and low cost. So, it is an attractive candidate for multiband and multifunction antennas, such as satellite antennas, of which omni-directional normal mode and directive axial mode are needed for beaconing and communication respectively.
2013-06-26
PIER B
Vol. 52, 327-345
On the Mixed Scattering Mechanism Analysis of Model-Based Decomposition for Polarimetric SAR Data
Wen Yang , Hui Song , Gui-Song Xia and Xin Xu
This paper introduces a simple but effective scattering mechanism identification scheme for analyzing mixed scattering mechanisms obtained by model-based decomposition. Using the normalized scattering vector, each pixel is represented by a point in a standard 2-simplex in R3. Seven scattering category centers are represented by the three vertices, the three midpoints of sides and the centroid of the 2-simplex. The scattering category partitioning problem is then solved by minimizing the Euclidean distance between the image pixels and these category centers. The proposed scattering mechanism identification scheme is finally used for data analyzing and unsupervised classification. Experiments on AIRSAR and E-SAR L-band PolSAR images demonstrate the effectiveness of the proposed method.