Vol. 52
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-06-28
Mutual Coupling Calibration for Electromagnetic Vector Sensor
By
Progress In Electromagnetics Research B, Vol. 52, 347-362, 2013
Abstract
A subspace self-calibration ESPRIT algorithm for mutual coupling across an electromagnetic vector sensor is proposed in this paper. By introducing an auxiliary array element, the mutual coupling is calibrated. The whole array's mutual coupling matrix can be obtained simultaneously. A mathematic model for mutual coupling across the six collocated antennas of an electromagnetic vector sensor is established. And the solution of mutual coupling matrix was transformed into the solution of several matrix elements. The Cramer-Rao Lower Bound (CRLB) is also derived in the end of this paper to verify the efficacy of the proposed algorithm. The simulation results demonstrate that this approach is correct and effective.
Citation
Lanmei Wang, Guibao Wang, and Cao Zeng, "Mutual Coupling Calibration for Electromagnetic Vector Sensor," Progress In Electromagnetics Research B, Vol. 52, 347-362, 2013.
doi:10.2528/PIERB13042004
References

1. Nehorai, A. and E. Paldi, "Superresolution compact array radio location technology (SuperCART) project," Asilomar Conf., 566-572, 1991.        Google Scholar

2. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Trans. on Signal Processing, Vol. 42, No. 2, 376-398, 1994.
doi:10.1109/78.275610        Google Scholar

3. Li, J., "Direction and polarization estimation using arrays with small loops and short dipoles," IEEE Trans. Antennas Propagat., Vol. 41, No. 3, 379-387, 1993.
doi:10.1109/8.233120        Google Scholar

4. Wong, K. T. and M. D. Zoltowski, "Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations ," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 671-681, 2000.
doi:10.1109/8.855485        Google Scholar

5. Wong, K. T. and M. D. Zoltowski, "Root-Music-based direction finding and polarization estimation using diversely polarized possibly collocated antennas," IEEE Antennas and Wireless Propagation Letter, Vol. 3, 129-132, 2004.
doi:10.1109/LAWP.2004.831083        Google Scholar

6. Xu, Z. and X. Yuan, "Cramer-Rao bounds of angle-of-arrival & polarisation estimation for various triads," IET Microwaves, Antennas & Propagation, Vol. 6, No. 15, 1651-1664, 2012.
doi:10.1049/iet-map.2012.0030        Google Scholar

7. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1467-1474, 1997.
doi:10.1109/8.633852        Google Scholar

8. Jiang, J. F. and J. Q. Zhang, "Geometric algebra of Euclidean 3-space for electromagnetic vector-sensor array processing, Part I: modeling," EE Trans. Antennas Propagat., Vol. 58, No. 12, 3961-3973, 2010.
doi:10.1109/TAP.2010.2078468        Google Scholar

9. Xiao, J. J. and A. Nehorai, "Optimal polarized beampattern synthesis using a vector antenna array," IEEE Trans. on Signal Processing, Vol. 57, No. 2, 576-587, Feb. 2009.
doi:10.1109/TSP.2008.2007107        Google Scholar

10. Gong, X. F., Z. W. Liu, and Y. G. Xu, "Regularised parallel actor analysis for the estimation of direction-of-arrival and polarisation with a single electromagnetic vector-sensor," IET Signal Processing, Vol. 5, No. 4, 390-396, 2011.
doi:10.1049/iet-spr.2009.0221        Google Scholar

11. Sun, L., G. Ou, and Y. Lu, "Vector sensor cross-product for direction of arrival estimation," International Congress on Image and Signal Processing, 1-5, 2009.        Google Scholar

12. Wong, K. T. and M. D. Zoltowski, "Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations," Proc. IEEE. Int. Conf. Acoust. Speech Signal Processing, Vol. 4, 1945-1952, May 1998.        Google Scholar

13. Tan, K. C., K. C. Ho, and A. Nehorai, "Linear independence of steering vectors of an electromagnetic vector sensor," IEEE Trans. on Signal Processing, Vol. 44, No. 12, 3099-3107, 1996.
doi:10.1109/78.553483        Google Scholar

14. Nehorai, A. and P. Tichavsky, "Cross-product algorithms for source tracking using an EM vector sensor," IEEE Trans. on Signal Processing, Vol. 47, No. 2, 2863-2867, 1999.
doi:10.1109/78.790667        Google Scholar

15. Yuan, X., "Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor," IEEE Trans. on Signal Processing, Vol. 60, No. 3, 1270-1282, Mar. 2012.
doi:10.1109/TSP.2011.2177263        Google Scholar

16. Yuan, X., "Polynomial-phase signal source-tracking using an electromagnetic vector-sensor," IEEE. Int. Conf. Acoust. Speech Signal Processing (ICASSP) , 2577-2580, Mar. 2012.        Google Scholar

17. Wong, K. T. and X. Yuan, "Vector cross-product direction-¯nding with an electromagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles/loops," IEEE Trans. on Signal Processing, Vol. 59, No. 1, 160-171, 2011.
doi:10.1109/TSP.2010.2084085        Google Scholar

18. Zhang, Y., Q. Wan, and A. M. Huang, "Localization of narrow band sources in the presence of mutual coupling via sparse solution finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
doi:10.2528/PIER08090703        Google Scholar

19. Mohammadian, A. H., S. S. Soliman, M. A. Tassoudji, and L. Golovanevsky, "A closed-form method for predicting mutual coupling between base-station dipole arrays," IEEE Trans. on ehicular Technology, Vol. 56, No. 3, 1088-1099, 2007.
doi:10.1109/TVT.2007.895542        Google Scholar

20. Wang, , Q. and Q. Q. He, "An arbitrary conformal array pattern synthesis method that includes mutual coupling and platform effects," Progress In Electromagnetics Research , Vol. 110, 297-311, 2010.
doi:10.2528/PIER10092204        Google Scholar

21. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.        Google Scholar

22. Kerkhoff , A. J. and L. Hao, "A simplified method for reducing mutual coupling effects in low frequency radio telescope phased arrays," IEEE Trans. Antennas and Propagat., Vol. 59, No. 6, 1838-1845, 2011.        Google Scholar

23. Yousefzadeh, N., C. Ghobadi, and M. Kamyab "Consideration of mutual coupling in a microstrip patch array using fractal elements," Progress In Electromagnetics Research, Vol. 66, 41-49, 2006.        Google Scholar

24. Yu, Y., H. S. Lui, C. H. Niow, and H. T. Hui, "Improved DOA estimations using the receiving mutual impedances for mutual coupling compensation: An experimental study," IEEE Transactions on Wireless Communications, Vol. 10, No. 7, 2228-2233, 2011.        Google Scholar

25. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.        Google Scholar

26. Sellone, F. and A. Serra, "An iterative algorithm for the compensation of toeplitz mutual coupling in uniform and linear arrays," Digital Signal Processing Workshop, 12th --- 4th Signal Processing Education Workshop, 438-443, 2006.        Google Scholar

27. Wang, B. H., Y. L. Wang, and C. Hui, "A robust DOA estimation algorithm for uniform linear array in the presence of mutual coupling," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 924-927, 2003.        Google Scholar

28. Yuan, X., K. T. Wong, and K. Agrawal, "Polarization estimation with a dipole-dipole pair, a dipole-loop pair, or a loop-loop pair of various orientations," IEEE Trans. Antennas Propagat., Vol. 60, No. 5, 2442-2452, 2012.        Google Scholar

29. Miron, S., N. L. Bihan, and J. I. Mars, "Quaternion-MUSIC for vector-sensor array processing," IEEE Trans. on Signal Processing, Vol. 54, No. 4, 1218 -1229, Apr. 2006.        Google Scholar

30. Yuan, X., "Cramer-Rao bound of the direction-of-arrival estimation using a spatially spread electromagnetic vector-sensor," IEEE Statistical Signal Processing Workshop, 1-4, Jun. 2011.        Google Scholar

31. Bihan, N. L., S. Miron, and J. I. Mars, "MUSIC algorithm for vector-sensors array using biquaternions," IEEE Trans. on Signal Processing , Vol. 55, No. 9, 4523-4533, Sep. 2007.        Google Scholar

32. Wong, K. T., "Direction finding/polarization estimation-dipole and/or loop triad(s)," IEEE Trans. Aerosp. Electron. Syst., Vol. 37, No. 2, 679-684, 2001.        Google Scholar

33. Gong, X. F., Z. W. Liu, and Y. G. Xu, "Coherent source localization: Bicomplex polarimetric smoothing with electromagnetic vector-sensors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 3, 2268-2285, Jul. 2011.        Google Scholar

34. Luo, F. and X. Yuan, "Enhanced `vector-cross-product' direction-¯nding using a constrained sparse triangular-array," EURASIP Journal on Advances in Signal Processing, Vol. 2012, No. 1, 1-11, May 2012.
doi:doi:10.1186/1687-6180-2012-115        Google Scholar

35. He, J. and Z. Liu, "Computationally effcient two-dimensional direction-of-arrival estimation of electromagnetic sources using the propagator method," IET Radar, Sonar and Navigation, Vol. 3, No. 5, 437-448, 2009.        Google Scholar

36. Yuan, X., K. T. Wong, Z. Xu, and K. Agrawal, "Various compositions to form a triad of collocated dipoles/loops, for direction finding & polarization estimation," IEEE Sensors Journal, Vol. 12, No. 6, 1763-1771, Jun. 2012.        Google Scholar

37. Liu, Z., J. He, and Z. Liu, "Computationally effcient DOA and polarization estimation of coherent sources with linear electromagnetic vector-sensor array," EURASIP Journal on Advances in Signal Processing, Vol. 2011, 1-10, 2011.        Google Scholar

38. Yuan, X., "Quad compositions of collocated dipoles and loops: For direction finding and polarization estimation," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1044-1047, 2012.        Google Scholar

39. Sun, L., B. Li, Y. Lu, and G. Ou, "Distributed vector sensor cross product added with MUSIC for direction of arrival estimation," Asia-Pacific International Symposium on Electromagnetic Compatibility, 1354-1357, 2010.        Google Scholar