Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-02
Three-Dimensional Micromotion Signature Extraction of Rotating Targets in OFDM-LFM MIMO Radar
By
Progress In Electromagnetics Research, Vol. 140, 733-759, 2013
Abstract
In monostatic radars systems, only the micromotion signatures projected onto the radar line-of-sight (LOS) can be observed from echoes. As a result, the obtained micromotion signatures (e.g., the radius length of rotation) are sensitive to the radar LOS. In this paper, we propose a method for the accurate estimation of three-dimensional (3-D) micromotion signature with the orthogonal frequency division multiplexing - linear frequency modulation (OFDM-LFM) multi-input multi-output (MIMO) radar technique, which makes use of the advantages of the multi-view of MIMO radar systems and the broad bandwidth of the OFDM-LFM signals. In the proposed method, the Hough transform and Orthogonal Matching Pursuit (OMP) algorithm are introduced to extract the m-D curve features from echoes, and then the 3-D micromotion signatures of the rotating targets are obtained by solving nonlinear multivariable equation systems. The extracted 3-D micromotion signatures are no longer sensitive to the radar LOS, and can provide realistic feature information for target recognition. Simulations are given to validate the effectiveness of the proposed method.
Citation
Ying Luo, Qun Zhang, Cheng-Wei Qiu, Song Li, and Tat Yeo, "Three-Dimensional Micromotion Signature Extraction of Rotating Targets in OFDM-LFM MIMO Radar," Progress In Electromagnetics Research, Vol. 140, 733-759, 2013.
doi:10.2528/PIER13042202
References

1. Chen, V. C., F. Li, S. S. Ho, and H. Wechsler, "Micro-Doppler effect in radar: Phenomenon, model and simulation study," IEEE Trans. on Aerosp. Electron. Syst., Vol. 42, No. 1, 2-21, Jan. 2006.
doi:10.1109/TAES.2006.1603402

2. Guo, K. Y. and X. Q. Sheng, "A precise recognition approach of ballistic missile warhead and decoy," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1867-1875, 2009.
doi:10.1163/156939309789932377

3. Pan, X. Y., W. Wang, J. Liu, D. J. Feng, Y. C. Liu, and G. Y.Wang, "Features extraction of rotationally symmetric ballistic targets based on micro-Doppler," Progress In Electromagnetics Research, Vol. 137, 727-740, 2013.

4. Park, J.-H. and N.-H. Myung, "Effective reconstruction of the rotation-induced micro-Doppler from a noise-corrupted signature," Progress In Electromagnetics Research, Vol. 138, 499-518, 2013.

5. Lim, H., J. H. Yoo, C. H. Kim, K. I. Kwon, and N. H. Myung, "Radar cross section measurement of a realistic jet engine structure with rotating parts," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 999-108, 2011.
doi:10.1163/156939311795253993

6. Lei, P., J. P. Sun, J. Wang, and W. Hong, "Micromotion parameter estimation of free rigid targets based on radar micro-Doppler," IEEE Trans. on Geosci. Remote Sens., Vol. 50, No. 10, 3776-3786, 2012.
doi:10.1109/TGRS.2012.2185244

7. Lim, H., J. H. Park, J. H. Yoo, C. H. Kim, K. I. Kwon, and N. H. Myung, "Joint time-frequency analysis of radar micro-Doppler signatures from aircraft engine models Journal of Electromagnetic Waves and Applications,", Vol. 25, No. 8-9, 1069-1080, 2011.

8. Han, S. K., H. T. Kim, S. H. Park, and K. T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

9. Park, J. H., H. Lim, and N. H. Myung, "Modified Hilbert-Huang transform and its application to measured micro Doppler signatures from realistic jet engine models," Progress In Electromagnetics Research, Vol. 126, 255-268, 2012.
doi:10.2528/PIER12010602

10. Bai, X., M. Xing, F. Zhou, G. Lu, and Z. Bao, "Imaging of micromotion targets with rotating parts based on empirical-mode decomposition," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 11, 3514-3523, Nov. 2008.
doi:10.1109/TGRS.2008.2002322

11. Zhang, Q., T. S. Yeo, H. S. Tan, and Y. Luo, "Imaging of a moving target with rotating parts based on the Hough transform," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 1, 291-299, Jan. 2008.
doi:10.1109/TGRS.2007.907105

12. Sparr, T. and B. Krane, "Micro-Doppler analysis of vibrating targets in SAR," IEE Proc. --- Radar Sonar Navig., Vol. 150, No. 4, 277-283, Aug. 2003.
doi:10.1049/ip-rsn:20030697

13. Li, X., B. Deng, Y. L. Qin, H. Q. Wang, and Y. P. Li, "The influence of target micromotion on SAR and GMTI," IEEE Trans. on Geosci. Remote Sens., Vol. 49, No. 7, 2738-2751, Jul. 2011.
doi:10.1109/TGRS.2011.2104965

14. Luo, Y., Q. Zhang, C.-W. Qiu, et al. "Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 4, 2087-2098, Apr. 2010.
doi:10.1109/TGRS.2009.2034367

15. Fishler, E., A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela, "MIMO radar: An idea whose time has come," Proceeding of the IEEE Radar Conference, 71-78, Philadelphia, PA, 2004.

16. Qu, Y., G. S. Liao, S. Q. Zhu, X. Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
doi:10.2528/PIER08062306

17. Zhou, W., J. T. Wang, H. W. Chen, and X. Li, "Signal model and moving target detection based on MIMO synthetic aperture radar," Progress In Electromagnetics Research, Vol. 131, 311-329, 2012.

18. Hatam, M., A. Sheikhi, and M. A. Masnadi-Shirazi, "Target detection in pulse-train MIMO radars applying ICA algorithms," Progress In Electromagnetics Research, Vol. 122, 413-435, 2012.
doi:10.2528/PIER11101206

19. Pastina, D., M. Bucciarelli, and P. Lombardo, "Multistatic and MIMO distributed ISAR for enhanced cross-range resolution of rotating targets ," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 8, 3300-3317, Aug. 2010.
doi:10.1109/TGRS.2010.2043740

20. Zhu, Y. T., Y. Su, and W. X. Yu, "An ISAR imaging method based on MIMO technique," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 8, 3290-3299, Aug. 2010.
doi:10.1109/TGRS.2010.2045230

21. Wang, D.-W., X.-Y. Ma, A. L. Chen, and Y. Su, "High-resolution imaging using a wideband MIMO radar system with two distributed arrays ," IEEE Trans. on Image Processing, Vol. 19, No. 5, 1280-1289, May 2010.
doi:10.1109/TIP.2009.2039623

22. Luo, Y., J. He, X.-J. Liang, and Q. Zhang, "Three-dimensional micro-Doppler signature extraction in MIMO radar," The 2nd International Conference on Signal Processing Systems (ICSPS 2010), Vol. 2, 1-4, Dalian, China, Jul. 5-7, 2010.

23. Cheng, F., Z. S. He, H. M. Liu, et al. "The parameter setting problem of signal OFDM-LFM for MIMO radar," International Conference on Communications, Circuits and Systems, 876-880, Fujian, China, 2008.

24. Luo, Y., Q. Zhang, Y.-Q. Bai, et al. "High-resolution ISAR imaging with sparse-spectrum OFDM-LFM waveforms," PIERS Proceedings, 230-234, Kuala Lumpur, Malaysia, Mar. 2012.

25. Sen, S. and A. Nehorai, "OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking," IEEE Trans. on Signal Processing, Vol. 58, No. 6, 3152-3162, Jun. 2010.
doi:10.1109/TSP.2010.2044834

26. Lin, Q. Q., P. F. Tang, B. Yuan, and Z. P. Chen, "A new dechirp method for wideband radar direct IF sampling signal," 2012 IEEE 11th International Conference on Signal Processing (ICSP) , Vol. 3, 192-1924, 2012.

27. Kirkland, D. M., "An alternative range migration correction algorithm for focusing moving targets," Progress In Electromagnetics Research, Vol. 131, 227-241, 2012.

28. Zhang, L., T. Su, Z. Liu, and X. He, "High resolution ISAR imaging in receiver centered region area in bistatic radar," EURASIP Journal on Advances in Signal Processing, Vol. 50, 1-10, 2013.

29. Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition ," Proc. 27th Annu. Asilomar Conf. Signals, Systems, and Computers, Vol. 1, 40-44, Pacific Grove, CA, Nov. 1993.

30. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. on Information Theory, Vol. 53, No. 12, 4655-4666, Dec. 2007.
doi:10.1109/TIT.2007.909108