1. Cohen, N., "Fractal antennas: Part 1," Communications Quarterly, 7-22, Aug. 1995. Google Scholar
2. Cohen, N., "Fractal antenna applications in wireless telecommunications," IEEE Electronics Industries Forum of New England, 43-49, May 1997. Google Scholar
3. Werner, D. H., R. L. Haup, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
doi:10.1109/74.801513 Google Scholar
4. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650 Google Scholar
5. Gianvitorio, J. and Y. Rahmat, "Fractal antennas: A novel antenna miniaturization technique and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.
doi:10.1109/74.997888 Google Scholar
6. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal-shaped antennas: A review," Wiley Encyclopedia of RF and Microwave Engineering, Vol. 2, 1620-1635, Apr. 2005. Google Scholar
7. Liu, Y., S. Gong, and D. Fu, "The advances in development of fractal antennas," Chinese Journal of Radio Science, Vol. 17, No. 1, Feb. 2002. Google Scholar
8. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 46, 517-524, Apr. 1998.
doi:10.1109/8.664115 Google Scholar
9. Sinha, S. N. and M. Jain, "A self-affine fractal multiband antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 110-112, Apr. 2007.
doi:10.1109/LAWP.2007.891519 Google Scholar
10. Manimegalai, B., S. Raju, and V. Abhaikumar, "A multifractal Cantor antenna for multiband wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 359-362, Aug. 2009.
doi:10.1109/LAWP.2008.2000828 Google Scholar
11. Mandelbrot, B. B., The Fractal Geometry of Nature, 2nd Ed., W. H. Freeman, New York, 1983.
12. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 2nd Ed., John Wiley & Son, Inc, New York, 2003.
13. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, Nov. 2000.
doi:10.1109/8.900236 Google Scholar
14. Li, D. and J. F. Mao, "A Koch-like sided bow-tie fractal dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 40-49, May 2012. Google Scholar
15. Mirzapour, B. and H. R. Hassani, "Size reduction and bandwidth enhancement of snowflake fractal antenna," IET Microwaves, Antennas and Propagation, Vol. 2, No. 2, 180-187, Mar. 2008.
doi:10.1049/iet-map:20070133 Google Scholar
16. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application ," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907 Google Scholar
17. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, 2011.
doi:10.1109/LAWP.2011.2109030 Google Scholar
18. Ghatak, R., A. Karmakar, and D. R. Poddar, "A circularshaped Sierpinski carpet fractal UWB monopole antenna with band rejection capability," Progress In Electromagnetics Research C, Vol. 24, 221-234, 2011.
doi:10.2528/PIERC11082801 Google Scholar
19. Ghatak, R., A. Karmakar, and D. R. Poddar, "Hexagonal boundary Sierpinski carpet fractal shaped compact ultrawideband antenna with band rejection functionality," Int J. Electron Commun (AEÜ), Vol. 67, 250-255, 2013.
doi:10.1016/j.aeue.2012.08.007 Google Scholar
20. Li, D. and J. F. Mao, "Sierpinskized Koch-like sided multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 130, 204-227, Aug. 2012. Google Scholar
21. Vinoy, K. J., "Fractal shaped antenna elements for wide and multiband wireless applications," [D] The Graduate School College of Engineering, The Pennsylvania State University, Aug. 2002. Google Scholar
22. Zhu, J., A. Hoorfar, and N. Engheta, "Peano antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 71-74, 2004. Google Scholar
23. Gonzalez-Arbesu, J. M., S. Blanch, and J. Romeu, "The Hilbert curve as a small self-resonant monopole from a practical point of view," Microwave and Optical Technology Letters, Vol. 39, No. 1, 45-49, Oct. 2003.
doi:10.1002/mop.11122 Google Scholar
24. Zhu, J., A. Hoorfar, and N. Engheta, "Bandwidth, cross polarization and feed-point characteristics of matched Hilbert antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 2-5, Jan. 2003.
doi:10.1109/LAWP.2003.810765 Google Scholar
25. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2296-2303, Sep. 2003.
doi:10.1109/TAP.2003.816352 Google Scholar
26. Li, D. and J. F. Mao, "Koch-like sided Sierpinski gasket multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 26, 399-427, Apr. 2012.
doi:10.2528/PIER12010404 Google Scholar
27. http://www.radio-electronics.com/info/antennas/dipole/folded d ipole.php.
28. Patnam, R. H., "Broadband CPW-fed planar Koch fractal loop antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, No. 2, 429-431, May 2008.
doi:10.1109/LAWP.2008.2001968 Google Scholar
29. Mustafa, K. T., "Combined fractal dipole wire antenna," The Second International ITG Conference on Antennas, Vol. 2, 176-180, Mar. 2007. Google Scholar
30. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-28, Jun. 2003.
doi:10.1109/MAP.2003.1232160 Google Scholar
31. Werner, D. H., R. L. Haupt, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
doi:10.1109/74.801513 Google Scholar
32. Siakavara, K., "Hybrid-fractal direct radiating antenna arrays with small number of elements for satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2102-2106, Jun. 2010.
doi:10.1109/TAP.2010.2046868 Google Scholar
33. Werner, D. H., W. Kuhirun, and P. L. Werner, "The Peano-Gosper fractal array," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 2063-2072, Aug. 2003.
doi:10.1109/TAP.2003.815411 Google Scholar
34. Altshuler, E. E., "Hemispherical coverage using a double-folded monopole," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 8, 1112-1119, Aug. 1996.
doi:10.1109/8.511819 Google Scholar
35. Jung, J., K. Seol, W. Choi, and J. Choi, "Wideband monopole an- tenna for various mobile communication applications," Electronics Letters, Vol. 41, No. 24, 1313-1214, Nov. 2005.
doi:10.1049/el:20053114 Google Scholar
36. Lee, W. S., K. S. Oh, and J. W. Yu, "A wideband planar monopole antenna array with circular polarized and band-notched characteristics," Progress In Electromagnetics Research, Vol. 128, 381-398, 2012. Google Scholar
37. Liu, J., K. P. Esselle, S. G. Hay, and S. S. Zhong, "Study of an extremely wideband monopole antenna with triple band-notched charactersistics," Progress In Electromagnetics Research, Vol. 123, 143-158, 2012.
doi:10.2528/PIER11110401 Google Scholar
38. Xu, H. X., G. M. Wang, Y. Y. Lv, M. Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 705-725, 2013. Google Scholar