1. Berthold, J., A. A. M. Saleh, L. Blair, and J. M. Simmons, "Optical networking: Past, present, and future," J. Lightwave Technol., Vol. 26, 1104-1118, 2008.
doi:10.1109/JLT.2008.923609 Google Scholar
2. Saleh, A. A. M. and J. M. Simmons, "All-optical networking-evolution, benefits, challenges, and future vision," Proc. of IEEE, Vol. 100, 1105-1117, 2012.
doi:10.1109/JPROC.2011.2182589 Google Scholar
3. Wang, X., Y. Ji, L. Bai, H. Xing, and J. Fu, "Design and experimental demonstration of network coding in all-optical multicast networks," Proc. of IC-NIDC, 500-504, 2009. Google Scholar
4. Rejeb, R., M. S. Leeson, and R. J. Green, "Fault and attack management in all-optical networks," IEEE Commun. Mag., Vol. 44, 79-86, 2006.
doi:10.1109/MCOM.2006.248169 Google Scholar
5. Payne, D. B. and J. R. Stern, "Transparent single-mode fiber optical networks," J. Lightwave Technol., Vol. 4, 864-869, 1986.
doi:10.1109/JLT.1986.1074812 Google Scholar
6. Marciniak, M., "IP/optical networks: The impact of optical transparency," LFNM, 25-36, Kaharkiv, Ukraine, 2001. Google Scholar
7. Moghaddam, E. S., J. Tapolcai, and D. Mazroa, "Physical impairment of monitoring trails in all optical transparent networks," Int. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 1-7, 2011,ISBN 978-963-8111-77. Google Scholar
8. Krishnan, S. and A. Borude, "Security issues in all-optical networks," 2011 Annual SRII Global Conference, 790-794, 2011.
doi:10.1109/SRII.2011.108 Google Scholar
9. Zhang, J. and Y. Zhao, "Routing and spectrum assignment problem in three-C-aware dynamic flexible optical networks," Proc. of SPIE-OSA-IEEE Asia Communications and Photonics, Vol. 8310, 1-7, 2011. Google Scholar
10. Cuda, D., R. M. Indre, E. L. Rouzic, and J. Roberts, "Building a low-energy transparent optical wide area network with `multipaths‘," J. Opt. Commun. Netw., Vol. 5, 56-67, 2013.
doi:10.1364/JOCN.5.000056 Google Scholar
11. Yan, L., A. E. Willner, X. Wu, A. Li, A. Bogoni, Z. Y. Chen, and H. Y. Jiang, "All-optical signal processing for ultrahigh speed optical systems and networks," J. Lightwave Technol., Vol. 30, 3760-3770, 2012.
doi:10.1109/JLT.2012.2205134 Google Scholar
12. Johansson, S., M. Lindblom, P. Granestrand, B. Lagerstrom, and L. Thylen, "Optical cross-connect system in broad-band networks: System concept and demonstrators description," J. Lightwave Technol., Vol. 11, 688-694, 1993.
doi:10.1109/50.233234 Google Scholar
13. Simmons, J. M., Optical Network Design and Planning, Springer-Verlag, New York, 2008.
14. Borobic, B., C. Hong, A. Q. Liu, L. Xie, and F. L. Lewis, "Control of a MEMS optical switch," 43rd IEEE Conf. Decision and Control, 3039-3044, 2004. Google Scholar
15. Owusu, K. O., F. L. Lewis, B. Borovic, and A. Q. Liu, "Nonliner control of a MEMS optical switch," 45rd IEEE Conf. Decision and Control, 597-602, 2006.
doi:10.1109/CDC.2006.377521 Google Scholar
16. Abdulla, S. M. C., L. J. Kauppinen, M. Dijkstra, E. Berenschot, M. J. de Boer, R. M. de Ridder, and G. J. M. Krijnen, "Mechano-optical switching in a MEMS integrated photonic crystal slab waveguide," IEEE 24th Int. Conf. on Micro Electro Mechanical Systems, 9-12, 2011. Google Scholar
17. Li, M. G., D. J. Tebben, M. J. Soulliere, S. Hilbert, M. Zhao, I. Lelic, D. G. Hoefer, M. Gauland, V. Kaliniouk, L. Guiziou, J.-M. Jouanno, and R. E. Wagner, "Two-fiber optical channel shared protection ring with 4 x 4 thermal-optic switches," Proc. OFC 2001, Vol. 2, 228-229, 2001. Google Scholar
18. Perron, D., M. Wu, C. Horvath, D. Bachman, and V. Van, "All-optical switching in SU-8 conductor-gap-dielectric plasmonic microring resonator using thermal nonlinearity," Proc. Quantum Electronics and Laser Science Conf., 1-2, Baltimore, MD, 2011. Google Scholar
19. Li, C. and A. W. Poon, "Silicon electro-optic switching based on coupled-microring resonators," Conf. on Lasers and ElectroOptics (CLEO), 1-2, 2007. Google Scholar
20. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear superimposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetics Research, Vol. 77, 243-266, 2007.
doi:10.2528/PIER07072903 Google Scholar
21. Jain, K., R. Mehra, and P. H. K. Dixit, "Optimization of 2 x 2 Mach-Zehnder interferometer electro-optic switch," 3th Int. Conf. on Computer and Communication Technology, 171-174, 2012. Google Scholar
22. Skirtach, A. G., S. A. Boothroyd, and C. P. Grover, "Measurement of the nonlinear response in a strongly pumped erbium doped amplifiers for all-optical switching," Proc. OFC'99, 279-281, 1999. Google Scholar
23. Yakshin, M. A., C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, "Compact, diode-pumped Yb :YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications," OSA/CLEO, 1-2, 2011. Google Scholar
24. Kurumida, J. and S. J. B. Yoo, "Nonlinear optical signal processing in optical packet switching systems," IEEE J. Quantum Electron., Vol. 18, 978-987, 2012.
doi:10.1109/JSTQE.2011.2143390 Google Scholar
25. Khorrami, Y., V. Ahmadi, and M. Razaghi, "Tb/s all-optical nonlinear switching using semiconductor optical amplifier based Mach-Zehnder interferometer," 20th Iranian Conference on Electrical Engineering (ICEE 2012), 118-123, Tehran, Iran, 2012.
doi:10.1109/IranianCEE.2012.6292336 Google Scholar
26. Aboujeib, J., A. Perennou, V. Quintard, and J. L. Bihan, "Evaluation of the crosstalk and losses in a multi-transducer acousto-optic switch," 3rd IEEE Int. Conf. Information and Communications Technologies: From Theory to Application (ICTTA'08), 1-6, Damascus, Apr. 7-11, 2008. Google Scholar
27. Ma, X. and G.-S. Kuo, "Optical switching technology comparison: Optical MEMS vs. other technologies," IEEE Commun. Mag., Vol. 41, S16-S23, 2003.
doi:10.1109/MCOM.2003.1222716 Google Scholar
28. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightwave Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114 Google Scholar
29. Chen, D., M.-L. Vincent Tse, and H.-Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701 Google Scholar
30. Chen, D., G. Hu, X. A. Liu, B. Peng, and G. Wu, "Bending analysis of a dual-core photonic crystal fiber," Progress In Electromagnetics Research, Vol. 120, 293-307, 2011. Google Scholar
31. Khan, K. R., S. Bidnyk, and T. J. Hall, "Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 22, 179-189, 2012.
doi:10.2528/PIERM11102810 Google Scholar
32. Chen, D., M.-L. V. Tse, C. Wu, H. Y. Fu, and H. Y. Tam, "Highly birefringent four-hole fiber for pressure sensing," Progress In Electromagnetics Research, Vol. 114, 145-158, 2011. Google Scholar
33. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804 Google Scholar
34. Chau, Y.-F., C.-Y. Liu, H.-H. Yeh, and D. P. Tsai, "A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.
doi:10.2528/PIERB10042405 Google Scholar
35. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040 Google Scholar
36. Beltran-Meja, F., G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, "Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes," Opt. Lett., Vol. 35, 544-546, 2010.
doi:10.1364/OL.35.000544 Google Scholar
37. Saitoh, K. and M. Koshiba, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2004.
doi:10.1364/OE.11.000843 Google Scholar
38. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309 Google Scholar
39. Chen, D., M.-L. Vincent Tse, and H.-Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706 Google Scholar
40. Singh, V. and D. Kumar, "Modal dispersion characteristics of a Bragg fiber having plasma in the cladding regions," Progress In Electromagnetics Research, Vol. 89, 167-181, 2009.
doi:10.2528/PIER08112702 Google Scholar
41. Huttunen, A. and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express, Vol. 13, 627-635, 2005.
doi:10.1364/OPEX.13.000627 Google Scholar
42. Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, Vol. 14, 3015-3023, 2006.
doi:10.1364/OE.14.003015 Google Scholar
43. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365 Google Scholar
44. Shen, G.-F., X.-M. Zhang, H. Chi, and X.-F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202 Google Scholar
45. Briks, T. A., J. C. Knight, and P. St. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett., Vol. 22, 961-963, 1997.
doi:10.1364/OL.22.000961 Google Scholar
46. Lian, Z., P. Horak, X. Feng, L. Xiao, K. Frampton, N. White, J. A. Tucknott, H. Rutt, D. N. Payne, W. Stewart, and W. H. Loh, "Nanomechanical optical fiber," Opt. Express, Vol. 20, 29386-29394, 2012.
doi:10.1364/OE.20.029386 Google Scholar
47. Szpulak, M., T. Martynkien, and W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt., Vol. 43, 4739-4744, 2004.
doi:10.1364/AO.43.004739 Google Scholar
48. Wu, C., B. O. Guan, Z. Wang, and X. Feng, "Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers," J. Lightwave Technol., Vol. 28, 1392-1397, 2010.
doi:10.1109/JLT.2010.2042277 Google Scholar
49. Huang, W. P., "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Am. A, Vol. 11, 963-983, 1994.
doi:10.1364/JOSAA.11.000963 Google Scholar
50. Nogueira, R. N., I. Abe, A. J. Fernandes, H. J. Kalinowski, J. R. F. da Rocha, and J. L. Pinto, "Spatial characterization of fiber Bragg grating structures using transversal pressure," Optics Communications, Vol. 259, 110-114, 2006.
doi:10.1016/j.optcom.2005.08.033 Google Scholar
51. Xie, H. M., P. Dabkiewicz, R. Ulrich, and K. Okamoto, "Side-hole fiber for fiber-optic pressure sensing," Opt. Lett., Vol. 11, 333-335, 1986.
doi:10.1364/OL.11.000333 Google Scholar