Vol. 32
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-15
Single-Nanoweb Suspended Twin-Core Fiber for Optical Switching
By
Progress In Electromagnetics Research M, Vol. 32, 43-55, 2013
Abstract
A novel suspended twin-core fiber (STCF) based on a single-nanoweb structure for optical switching is proposed. The singlenanoweb structure of the STCF is an ultrathin glass membrane (nanoweb) suspended in air and adhered to the inner ring of a glass fiber capillary, which substantially provides a built-in transducing mechanism to boost the pressure-induced index change in the fiber core region of the STCF. Two fiber cores locate symmetrically in the center of the nanoweb, resulting to the mode coupling for the guiding light in the STCF. Optical and mechanical properties of the proposed STCFs under different pressure force are numerically investigated. Optical switching based on the STCF is achieved by controlling the pressure force applied to the STCF. Our simulations show that optical switching from one core to the other in the STCF is realized based on a low switching force of only 8 N. The performances of the optical switching based on STCFs with different structure parameters are presented.
Citation
Xiaowei Ma Daru Chen , "Single-Nanoweb Suspended Twin-Core Fiber for Optical Switching," Progress In Electromagnetics Research M, Vol. 32, 43-55, 2013.
doi:10.2528/PIERM13052007
http://www.jpier.org/PIERM/pier.php?paper=13052007
References

1. Berthold, J., A. A. M. Saleh, L. Blair, and J. M. Simmons, "Optical networking: Past, present, and future," J. Lightwave Technol., Vol. 26, 1104-1118, 2008.
doi:10.1109/JLT.2008.923609

2. Saleh, A. A. M. and J. M. Simmons, "All-optical networking-evolution, benefits, challenges, and future vision," Proc. of IEEE, Vol. 100, 1105-1117, 2012.
doi:10.1109/JPROC.2011.2182589

3. Wang, X., Y. Ji, L. Bai, H. Xing, and J. Fu, "Design and experimental demonstration of network coding in all-optical multicast networks," Proc. of IC-NIDC, 500-504, 2009.

4. Rejeb, R., M. S. Leeson, and R. J. Green, "Fault and attack management in all-optical networks," IEEE Commun. Mag., Vol. 44, 79-86, 2006.
doi:10.1109/MCOM.2006.248169

5. Payne, D. B. and J. R. Stern, "Transparent single-mode fiber optical networks," J. Lightwave Technol., Vol. 4, 864-869, 1986.
doi:10.1109/JLT.1986.1074812

6. Marciniak, M., "IP/optical networks: The impact of optical transparency," LFNM, 25-36, Kaharkiv, Ukraine, 2001.

7. Moghaddam, E. S., J. Tapolcai, and D. Mazroa, "Physical impairment of monitoring trails in all optical transparent networks," Int. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 1-7, 2011,ISBN 978-963-8111-77.

8. Krishnan, S. and A. Borude, "Security issues in all-optical networks," 2011 Annual SRII Global Conference, 790-794, 2011.
doi:10.1109/SRII.2011.108

9. Zhang, J. and Y. Zhao, "Routing and spectrum assignment problem in three-C-aware dynamic flexible optical networks," Proc. of SPIE-OSA-IEEE Asia Communications and Photonics, Vol. 8310, 1-7, 2011.

10. Cuda, D., R. M. Indre, E. L. Rouzic, and J. Roberts, "Building a low-energy transparent optical wide area network with `multipaths‘," J. Opt. Commun. Netw., Vol. 5, 56-67, 2013.
doi:10.1364/JOCN.5.000056

11. Yan, L., A. E. Willner, X. Wu, A. Li, A. Bogoni, Z. Y. Chen, and H. Y. Jiang, "All-optical signal processing for ultrahigh speed optical systems and networks," J. Lightwave Technol., Vol. 30, 3760-3770, 2012.
doi:10.1109/JLT.2012.2205134

12. Johansson, S., M. Lindblom, P. Granestrand, B. Lagerstrom, and L. Thylen, "Optical cross-connect system in broad-band networks: System concept and demonstrators description," J. Lightwave Technol., Vol. 11, 688-694, 1993.
doi:10.1109/50.233234

13. Simmons, J. M., Optical Network Design and Planning, Springer-Verlag, New York, 2008.

14. Borobic, B., C. Hong, A. Q. Liu, L. Xie, and F. L. Lewis, "Control of a MEMS optical switch," 43rd IEEE Conf. Decision and Control, 3039-3044, 2004.

15. Owusu, K. O., F. L. Lewis, B. Borovic, and A. Q. Liu, "Nonliner control of a MEMS optical switch," 45rd IEEE Conf. Decision and Control, 597-602, 2006.
doi:10.1109/CDC.2006.377521

16. Abdulla, S. M. C., L. J. Kauppinen, M. Dijkstra, E. Berenschot, M. J. de Boer, R. M. de Ridder, and G. J. M. Krijnen, "Mechano-optical switching in a MEMS integrated photonic crystal slab waveguide," IEEE 24th Int. Conf. on Micro Electro Mechanical Systems, 9-12, 2011.

17. Li, M. G., D. J. Tebben, M. J. Soulliere, S. Hilbert, M. Zhao, I. Lelic, D. G. Hoefer, M. Gauland, V. Kaliniouk, L. Guiziou, J.-M. Jouanno, and R. E. Wagner, "Two-fiber optical channel shared protection ring with 4 x 4 thermal-optic switches," Proc. OFC 2001, Vol. 2, 228-229, 2001.

18. Perron, D., M. Wu, C. Horvath, D. Bachman, and V. Van, "All-optical switching in SU-8 conductor-gap-dielectric plasmonic microring resonator using thermal nonlinearity," Proc. Quantum Electronics and Laser Science Conf., 1-2, Baltimore, MD, 2011.

19. Li, C. and A. W. Poon, "Silicon electro-optic switching based on coupled-microring resonators," Conf. on Lasers and ElectroOptics (CLEO), 1-2, 2007.

20. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear superimposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetics Research, Vol. 77, 243-266, 2007.
doi:10.2528/PIER07072903

21. Jain, K., R. Mehra, and P. H. K. Dixit, "Optimization of 2 x 2 Mach-Zehnder interferometer electro-optic switch," 3th Int. Conf. on Computer and Communication Technology, 171-174, 2012.

22. Skirtach, A. G., S. A. Boothroyd, and C. P. Grover, "Measurement of the nonlinear response in a strongly pumped erbium doped amplifiers for all-optical switching," Proc. OFC'99, 279-281, 1999.

23. Yakshin, M. A., C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, "Compact, diode-pumped Yb :YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications," OSA/CLEO, 1-2, 2011.

24. Kurumida, J. and S. J. B. Yoo, "Nonlinear optical signal processing in optical packet switching systems," IEEE J. Quantum Electron., Vol. 18, 978-987, 2012.
doi:10.1109/JSTQE.2011.2143390

25. Khorrami, Y., V. Ahmadi, and M. Razaghi, "Tb/s all-optical nonlinear switching using semiconductor optical amplifier based Mach-Zehnder interferometer," 20th Iranian Conference on Electrical Engineering (ICEE 2012), 118-123, Tehran, Iran, 2012.
doi:10.1109/IranianCEE.2012.6292336

26. Aboujeib, J., A. Perennou, V. Quintard, and J. L. Bihan, "Evaluation of the crosstalk and losses in a multi-transducer acousto-optic switch," 3rd IEEE Int. Conf. Information and Communications Technologies: From Theory to Application (ICTTA'08), 1-6, Damascus, Apr. 7-11, 2008.

27. Ma, X. and G.-S. Kuo, "Optical switching technology comparison: Optical MEMS vs. other technologies," IEEE Commun. Mag., Vol. 41, S16-S23, 2003.
doi:10.1109/MCOM.2003.1222716

28. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightwave Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114

29. Chen, D., M.-L. Vincent Tse, and H.-Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701

30. Chen, D., G. Hu, X. A. Liu, B. Peng, and G. Wu, "Bending analysis of a dual-core photonic crystal fiber," Progress In Electromagnetics Research, Vol. 120, 293-307, 2011.

31. Khan, K. R., S. Bidnyk, and T. J. Hall, "Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 22, 179-189, 2012.
doi:10.2528/PIERM11102810

32. Chen, D., M.-L. V. Tse, C. Wu, H. Y. Fu, and H. Y. Tam, "Highly birefringent four-hole fiber for pressure sensing," Progress In Electromagnetics Research, Vol. 114, 145-158, 2011.

33. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804

34. Chau, Y.-F., C.-Y. Liu, H.-H. Yeh, and D. P. Tsai, "A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.
doi:10.2528/PIERB10042405

35. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040

36. Beltran-Meja, F., G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. B. Cordeiro, "Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes," Opt. Lett., Vol. 35, 544-546, 2010.
doi:10.1364/OL.35.000544

37. Saitoh, K. and M. Koshiba, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2004.
doi:10.1364/OE.11.000843

38. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309

39. Chen, D., M.-L. Vincent Tse, and H.-Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706

40. Singh, V. and D. Kumar, "Modal dispersion characteristics of a Bragg fiber having plasma in the cladding regions," Progress In Electromagnetics Research, Vol. 89, 167-181, 2009.
doi:10.2528/PIER08112702

41. Huttunen, A. and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express, Vol. 13, 627-635, 2005.
doi:10.1364/OPEX.13.000627

42. Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, Vol. 14, 3015-3023, 2006.
doi:10.1364/OE.14.003015

43. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365

44. Shen, G.-F., X.-M. Zhang, H. Chi, and X.-F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202

45. Briks, T. A., J. C. Knight, and P. St. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett., Vol. 22, 961-963, 1997.
doi:10.1364/OL.22.000961

46. Lian, Z., P. Horak, X. Feng, L. Xiao, K. Frampton, N. White, J. A. Tucknott, H. Rutt, D. N. Payne, W. Stewart, and W. H. Loh, "Nanomechanical optical fiber," Opt. Express, Vol. 20, 29386-29394, 2012.
doi:10.1364/OE.20.029386

47. Szpulak, M., T. Martynkien, and W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt., Vol. 43, 4739-4744, 2004.
doi:10.1364/AO.43.004739

48. Wu, C., B. O. Guan, Z. Wang, and X. Feng, "Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers," J. Lightwave Technol., Vol. 28, 1392-1397, 2010.
doi:10.1109/JLT.2010.2042277

49. Huang, W. P., "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Am. A, Vol. 11, 963-983, 1994.
doi:10.1364/JOSAA.11.000963

50. Nogueira, R. N., I. Abe, A. J. Fernandes, H. J. Kalinowski, J. R. F. da Rocha, and J. L. Pinto, "Spatial characterization of fiber Bragg grating structures using transversal pressure," Optics Communications, Vol. 259, 110-114, 2006.
doi:10.1016/j.optcom.2005.08.033

51. Xie, H. M., P. Dabkiewicz, R. Ulrich, and K. Okamoto, "Side-hole fiber for fiber-optic pressure sensing," Opt. Lett., Vol. 11, 333-335, 1986.
doi:10.1364/OL.11.000333