1. Steer, M., Beyond 3G, Vol. 8, No. 1, 76-82 IEEE Microwave Magazine, 2007.
2. Ratasuk, R., B. Mondal, N. Mangalvedhe, and T. Thomas, "LTE-Advanced: Next-generation wireless broadband technology," IEEE Wireless Communications, Vol. 17, No. 3, 10-22, 2010.
doi:10.1109/MWC.2010.5490974 Google Scholar
3. Baker, M., "From LTE-advanced to the future," IEEE Communications Magazine, Vol. 50, No. 2, 116-120, 2012.
doi:10.1109/MCOM.2012.6146490 Google Scholar
4. Akimoto, Y., Y. Kim, M.-I. Lee, K. Bhattad, and A. Ekpenyong, "Evolution of reference signals for LTE-Advanced systems," IEEE Communications Magazine, Vol. 50, No. 2, 132-138, 2012.
doi:10.1109/MCOM.2012.6146492 Google Scholar
5. Karkhaneh, H., A. Ghorbani, and H. Amindavar, "Modeling and compensating memory effect in high power amplifier for OFDM systems," Progress In Electromagnetics Research C, Vol. 3, 183-194, 2008.
doi:10.2528/PIERC08041201 Google Scholar
6. Du, T., C. Yu, Y. Liu, J. Gao, S. Li, and Y. Wu, "A new accurate Volterra-based model for behavioral modeling and digital predistortion of RF power amplifiers," Progress In Electromagnetics Research C, Vol. 29, 205-218, 2012. Google Scholar
7. Dhar, J. and R. K. Arora, "Enclosure effect on microwave power amplifier," Progress In Electromagnetics Research C, Vol. 19, 163-177, 2011. Google Scholar
8. Yang, J.-R., H.-C. Son, and Y.-J. Park, "A class E power amplifier with coupling coils for a wireless power transfer system," Progress In Electromagnetics Research C, Vol. 35, 13-22, 2013. Google Scholar
9. Zhou, H.-J. and H. F. Wu, "Design of an S-band two-way inverted asymmetrical Doherty power amplifier for long term evolution applications ," Progress In Electromagnetics Research Letters, Vol. 39, 73-80, 2013. Google Scholar
10. Pelk, M. J. and W. C. Edmund Neo, "A high-efficiency 100-W GaN three-way Doherty amplifier for base-station applications," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1582-1591, 2008.
doi:10.1109/TMTT.2008.924364 Google Scholar
11. Chen, W., S. A. Bassam, X. Li, and Y. Liu, "Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 10, 2537-2546, 2011.
doi:10.1109/TMTT.2011.2164089 Google Scholar
12. Kim, J., J. Moon, Y. Y. Woo, S. Hong, I. Kim, J. Kim, and B. Kim, "Analysis of a fully matched saturated Doherty amplifier with excellent efficiency," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 328-338, 2008.
doi:10.1109/TMTT.2007.914361 Google Scholar
13. Ma, R., Z. Wang, X. Yang, and S. Lanfranco, "Implementation of a current-mode class-S RF power amplifier with GaN HEMTs for LTE-Advanced," Wireless and Microwave Technology Conference, 1-6, 2012.
14. Tanany, A., A. Sayed, and G. Boeck, "Analysis of broadband GaN switch mode class-E power amplifier," Progress In Electromagnetics Research Letters, Vol. 38, 151-160, 2013. Google Scholar
15. Lin, S. and A. E. Fathy, "Development of a wideband highly e±cient GaN VMCD VHF/UHF power amplifier," Progress In Electromagnetics Research C, Vol. 19, 135-147, 2011. Google Scholar
16. Ji, S. H., S. K. Eun, and C. S. Cho, "Linearity improved Doherty power amplifier using composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, 533-535, 2008.
doi:10.1109/LMWC.2008.2001014 Google Scholar
17. Lin, I-H., M. DeVincentis, and C. Caloz, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747 Google Scholar
18. Cripps, S. C., RF Power Amplifiers for Wireless Communications, Artech House, Norwood, MA, 2006.
19. Kim, J., J. Cha, I. Kim, and B. Kim, "Optimum operation of asymmetrical-cells-based linear Doherty power amplifiers --- Uneven power drive and power matching ," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1802-1809, 2005.
doi:10.1109/TMTT.2005.847073 Google Scholar
20. Kim, J., B. Fehri, S. Boumaiza, and J. Wood, "Power efficiency and linearity enhancement using optimized asymmetrical Doherty power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 2, 425-434, 2011.
doi:10.1109/TMTT.2010.2086466 Google Scholar
21. Darraji, R., F. M. Ghannouchi, and O. Hammi, "Generic load-pull-based design methodology for performance optimisation of Doherty amplifiers," IET Science, Measurement and Technology, Vol. 6, No. 3, 132-138, 2012.
doi:10.1049/iet-smt.2011.0023 Google Scholar
22. Hammi, O., S.-C. Jung, and F. M. Ghannouchi, "Design for linearizability of GaN based multi-carrier Doherty power amplifier through bias optimization ," Electronics, Circuits and Systems (ICECS), 492-495, 2012. Google Scholar
23. Seung, S., H. Ji, and C. S. Cho, "Concurrent dual-band class-E power ampli¯er using composite right/left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 6, 1341-1347, 2007.
doi:10.1109/TMTT.2007.895236 Google Scholar
24. Ooi, B. Z. M., S. W. Lee, and B. K. Chung, "EVM measurements using orthogonal separation at the output of a non-linear amplifier," IET Microwaves, Antennas & Propagation, Vol. 6, No. 7, 813-821, 2012.
doi:10.1049/iet-map.2011.0390 Google Scholar
25. Jung, S.-C. and O. Hammi, "Design optimization and DPD linearization of GaN-based unsymmetrical Doherty power amplifiers for 3G multicarrier applications," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2105-2113, 2009.
doi:10.1109/TMTT.2009.2027076 Google Scholar
26. Markos, A. Z., K. Bathich, F. GÄolden, and G. Boeck, "A 50W unsymmetrical GaN Doherty amplifier for LTE applications," 2010 European Microwave Conference (EuMC), 994-997, 2010.
27. Zhao, S., Z. Tang, Y. Wu, and L. Bao, "Linearity improved Doherty power amplifier using coupled-lines and a capacitive load," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 4, 221-223, 2011.
doi:10.1109/LMWC.2011.2115970 Google Scholar