Search Results(13675)

2012-10-16
PIER
Vol. 133, 1-15
Reflectarrays of Rectangular Microstrip Patches for Dual-Polarization Dual-Beam Radar Interferometers
Sembiam Rajagopal Rengarajan
Microstrip reflectarrays consisting of rectangular patches are investigated for application in space-based dual-polarized dual-beam radar interferometers. For nadir looking beams the angle of incidence of feed radiation in each patch is nominally 45˚. In such an application, square-patch reflectarrays can be designed for only one polarization with a sacrifice in performance in the other whereas reflectarrays consisting of rectangular patches may be designed for both polarizations, thereby improving their radiation performance. Piecewise planar parabolic reflectarrays consisting of square patches exhibit poor scan performance in tilted configuration. It is shown that with the use of rectangular patches in such a reflectarray one can design two beams of different polarizations for two offset feeds, thereby providing significant improvement in bandwidth and radiation performance.
2012-10-16
PIER
Vol. 132, 587-601
Coupling Effect for Dielectric Metamaterial Dimer
Fuli Zhang , Veronique Sadaune , Lei Kang , Qian Zhao , Ji Zhou and Didier Lippens
In this paper, we report experimentally and numerically on coupling effects of dielectric metamaterial dimer (metadimer) which composed of two identical ceramic cubes with high permittivity. The distance dependence of Mie resonance for metadimer is investigated under various polarizations of external wave. By changing the configurations and alignment of dimer resonator, it is revealed that magnetic and electric resonances of metadimer exhibits a red/blue shift, resulting from longitudinal or transverse coupling effects of dipoles. Besides, quasi bound states between tightly stacked dielectric cubes are also been pointed out for electric Mie resonance, which is responsible for an unexpected frequency shift with a reverse variation.
2012-10-16
PIER
Vol. 132, 571-586
Interferometric ISAR Imaging on Maritime Target Applications: Simulation of Realistic Targets and Dynamics
David Felguera-Martin , Jose-Tomas Gonzalez-Partida and Mateo Burgos-Garcia
ISAR imaging of maritime targets has greater success than other ISAR applications due to the constant oscillatory motions induced by waves and wind. However, relative target motions are usually unknown, difficult focusing, image interpretation and target classification. Using interferometry to obtain the height information makes possible to obtain a 3-D reconstruction of a target, aiding image focusing, image interpretation and target classification. However, the information and utility of the ISAR image and the interferometric information depends highly on geometry and targets dynamics. In this paper we will study the influence of movement dynamics in interferometric ISAR imaging using a realistic extended moving target simulation, a general geometry and complex dynamics models.
2012-10-15
PIER
Vol. 132, 551-570
Simple Formula and Its Exact Analytic Solution of Mutual Impedance for Nonplanar-Skew Dipoles
Jung-Hoon Han , Won-Young Song , Kyoung-Sub Oh and Noh-Hoon Myung
The analysis of an antenna mutual coupling is a significant issue for designing the wireless communication system especially includes an array mutual coupling problem. The accurate analysis of the mutual coupling between antennas is needed. Accordingly, several methods for the mutual impedance calculation of dipoles have been studied in cases of coplanar-skew and nonplanar-skew. This paper proposes an exact and simple method for analyzing the mutual impedance between two arbitrarily located and slanted dipoles using the modified induced EMF method; their expressions and the exact analytic solution. The proposed formula and their closed-form solutions are verified by numerical solution using HFSS and give good agreement.
2012-10-15
PIER
Vol. 132, 517-549
Development of a Symplectic Scheme with Optimized Numerical Dispersion-Relation Equation to Solve Maxwell's Equations in Dispersive Media
Tony Wen-Hann Sheu , Rih Yang Chung and Jia-Han Li
In this paper an explicit finite-difference scheme is developed in staggered grids for solving the Maxwell's equations in time domain. We are aimed to preserve the discrete zero-divergence condition in the electrical and magnetic fields and conserve the inherent laws in non-dispersive simple media all the time using the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme for the time derivative terms. The spatial derivative terms in the semi-discretized Faraday's and Ampere's equations are then approximated to get an accurate numerical dispersion relation equation that governs the numerical angular frequency and the wavenumbers for the Maxwell's equations defined in two space dimensions. To achieve the goal of getting the best dispersive characteristics in the chosen grid stencil, a fourth-order accurate space centered scheme with the ability of minimizing the difference between the exact and numerical dispersion relation equations is proposed. Our emphasis is placed on the accurate modeling of EM waves in the dispersive media of the Debye, Lorentz and Drude types. Through the computational exercises, the proposed dual-preserving Maxwell's equation solver is computationally demonstrated to be efficient for use to predict the long-term accurate wave solutions in a medium belonging either to a frequency independent or to a dependent type.
2012-10-12
PIER Letters
Vol. 35, 89-98
Compact Microstrip Bandpass Filters Using Triple-Mode Resonator
Ker Chia Lee , Hieng Tiong Su and Manas Kumar Haldar
Step-by-step procedures for designing a third order bandpass filter and a sixth order bandpass filter using a triple-mode resonator are described in this paper. The triple-mode resonator is a square open-loop resonator with an open circuited stepped-impedance stub and a grounding via located at the symmetrical plane of the resonator. The equations for approximating the resonant frequencies of the resonator are obtained from odd- and even-mode analysis. To design a filter, first, the theoretical resonant frequencies for the filter are calculated. Then the basic dimensions of the resonator are approximated using the equations. The filter layouts are fine-tuned by simulation and verified by experiment to conclude the paper. The first spurious response occurs at about 3 times the center frequency of the first passband in both filters. The simulated and measured results are in good agreement.
2012-10-11
PIER Letters
Vol. 35, 83-88
A Bandpass Filter with Compact Size and Extended Stopband Using Closed-Loop Transmission-Lines and Short-Circuited Stubs
Johanny Alberto Escobar-Pelaez , Jose Luis Olvera Cervantes , Alonso Corona-Chavez and Humberto Lobato-Morales
A novel 3-pole bandpass filter (BPF) based on microstrip loaded ring resonators (LRRs) is proposed. Each resonator is composed by a closed-loop transmission line and a short-circuited stub. By properly adjusting the impedance and the electrical length of each resonator, the proposed circuit may be made compact (over 93.7% smaller than a conventional ring resonator) and its stopband may be extended simultaneously. Each resonator exhibits an area of 0.0727 λg x 0.079 λg where λg is the guided wave length. A BPF at the center frequency of f0=1.9 GHz with stopband extended up to 7.8 GHz (=4f0) is developed showing good agreement between simulation and experimental results.
2012-10-11
PIER M
Vol. 26, 143-155
A Trans-Impedance Green's Function for the Dielectric Ring Circulator
Ryan S. Adams and Aaron K. Hatley
An efficient trans-impedance Green's function that describes the electromagnetic behavior of a ring circulator is presented. A rigorous derivation composed of an infinite summation of modified Bessel functions of the first and second kinds is included. As with more traditional circulator descriptions, the formulation herein contains a weak singularity when the measurement point is located near the impressed source point on the same radius. To accelerate convergence of the series, this singularity is extracted from the formulation and integrated analytically. To complete the formulation, two circulators are presented; the first with ports that emanate at equal angles from the outer radius, and the second with two ports associated with the outer radius and one port that connects to the inner radius. The computation time associated with the proposed analysis lasted approximately 0.25 s, whereas an identical structure simulated via a common full-wave solver lasted approximately 10 hours. Comparison of impedance data between the proposed analysis and full-wave simulation is presented.
2012-10-11
PIER
Vol. 132, 499-515
A Wideband Dual-Polarized Patch Antenna with Electric Probe and Magnetic Loop Feeds
Jiao-Jiao Xie , Ying-Zeng Yin , Jian Ren and Tuo Wang
A new wideband dual-polarized patch antenna consisting of a magnetically-fed and an electrically-fed is presented in the paper. The two feeds are orthogonal to each other at the center of the ground plane and generate 0° and 90° polarization separately. Two pairs of L-shaped slots are etched in the radiating patch to improve the impedance bandwidth. By using a shorting pin connecting the radiating patch to the ground plane, the coupling between the two feeding ports can be reduced. With the help of circuit simulation and full wave simulation, the equivalent circuit model of the antenna is established. The simulated and measured results show that the impedance bandwidths for VSWR less than 2 of the proposed dual-polarized antenna with a profile of are 27.3% (3.29-4.33 GHz) and 19% (3.05-3.69 GHz) for 0° polarization and 90° polarization, respectively, with a height of 0.08 λ0 between radiating patch and ground plane. The measured coupling between the two ports is below -20 dB over the operating band. Moreover, the measured gain of the proposed antenna is about 7.9 dBi and 6.1 dBi for port 1 and port 2, respectively, over the operating band. Measured results of the fabricated antenna prototypes are in good agreement with the simulated results.
2012-10-10
PIER B
Vol. 44, 427-445
New Algorithms for the Specific Absorption Rate Numerical Evaluation Based on Spherical Averaging Volumes
Luca Catarinucci and Luciano Tarricone
The numerical calculation of the Specific Absorption Rate (SAR) averaged over a certain tissue mass is a common practice when evaluating the potential health risk due to the human exposure to electromagnetic sources. Nevertheless, SAR values are strongly influenced by many factors such as, for instance, the shape of the volume containing the reference mass, the spatial discretization step, or the treatment of internal air, just to mention some of them: different choices can induce significant discrepancies. In this work an overview on some of the most commonly adopted SAR algorithms is firstly presented, and a discussion on their potential differences reported. Then, based on a spherical volume approach, some new algorithms are proposed. All the algorithms are then used to evaluate the SAR both in artificially generated test cases and in some practical human-antenna interaction problems. The result comparison highlights relevant discrepancies and enforces the necessity of a reasoned standardization of the techniques for the SAR calculation.
2012-10-10
PIER C
Vol. 33, 185-198
Design of Planar Coupled-Fed Monopole Antenna for Eight-Band LTE/WWAN Mobile Handset Application
Chia Hao Ku , Hsien-Wen Liu and Yao-Xin Ding
In this paper, a planar coupled-fed monopole antenna with eight-band LTE/WWAN (LTE700/2300/2500/GSM850/900/1800/1900/UMTS) operation for mobile handset device application is proposed. It simply consists of a T-shaped driven strip and a coupled radiating structure, which occupy a small PCB area of 50(L)x15(W) mm2. This antenna, which is printed on a 0.4 mm FR4 substrate and fed by a 50-Ω coaxial cable, can provide two wide operating bandwidths covering 697-1012 MHz and 1598-2795 MHz for LTE/WWAN communication systems. A prototype of the proposed antenna is fabricated, tested and analyzed. From the measurement results, nearly omnidirectional coverage and stable gain variation across the desired LTE/WWAN bands can be obtained with the antenna.
2012-10-09
PIER
Vol. 132, 479-498
Performance Evaluation of UWB on-Body Communication Under WiMAX off-Body EMI Existence
An-Ming Gao , Qi Hao Xu , Hong-Li Peng , Wei Jiang and Yong Jiang
A study of UWB on-body communication system performance, with the WiMax off-body electromagnetic interference (EMI) existence, is presented. Firstly, a compact UWB antenna with good on-body performance is verified and chosen as our reference antenna. Using this realistic antenna, channel transfer function (CTF) of UWB on-body channel in an indoor room is investigated by measurements. Based on the measured data, the parameters of its pathloss model and its power delay profile (PDP) model are extracted respectively. Secondly, a new body channel communication system model, composed of the on-body and off-body dual-link channel, together with UWB and WiMax signal models are presented. Finally, UWB on-body communication performances under different WiMax off-body EMI levels are studied by simulation. Simulated results show that this on-body system performance is quite limited and easily affected by the off-body WiMax EMI. It is pointed out that the existing UWB on-body communication abilities should be greatly improved when WiMax off-body EMI signals are considered.
2012-10-08
PIER B
Vol. 44, 405-425
Small Target Detection in Heavy Sea Clutter
Sijia Chen , Lingjiang Kong and Jianyu Yang
This paper mainly deals with the detection problem of the target with low Radar Cross-Section (RCS) in heavy sea clutter with unknown Power Spectral Density (PSD). Since the performance of traditional singlescan detectors degrades as the target of interest is smaller and weaker, three adaptive detectors, based upon a two-step design procedure, are proposed within the framework of the multiple-scan signal model. Firstly, the Multiple-Scan Detectors (MSDs) are derived according to the Generalized Likelihood Ratio Test (GLRT), Rao and Wald tests respectively under the assumption that the PSD of primary data is known. Secondly, three strategies are resorted to estimate the unknown PSD, and their Constant False Alarm Rate (CFAR) properties are assessed. Finally, numerical simulation results show that the adaptive MSDs outperform the traditional single-scan detector using Monte Carlo method.
2012-10-08
PIER C
Vol. 33, 171-184
WCIP Applied to Substrate Integrated Waveguide
Ahmad Ismail Alhzzoury , Nathalie Raveu , O. Pigaglio , Henri Baudrand and K. Al-Abdullah
This article presents an efficient method for characterization of substrate integrated passive circuits. The analysis is based on the wave concept formulation and the iterative resolution of a system of two equations between incident and re ected waves. Simulations obtained are compared with analytical references and HFSS simulations. A good agreement is achieved with computation time saving.
2012-10-08
PIER C
Vol. 33, 157-169
Analysis of Lossy SIW Structures Based on the Parallel Plates Waveguide Green's Function
Giandomenico Amendola , Emilio Arnieri and Luigi Boccia
In this paper, a full-wave analysis technique of lossy substrate integrated waveguides, based on the dyadic Green's function of the parallel plate waveguide, is presented. The field inside the waveguide is expressed in terms of cylindrical vector wave-functions and the finite conductivity of the top and of the bottom plates, and of the metallic vias are taken into account. Losses into the dielectric substrate are also included. Coaxial ports are considered as sources and self and mutual admittances are evaluated. Cases of practical structure taken from literature are presented showing a very good agreement with the most used commercial software.
2012-10-08
PIER
Vol. 132, 463-478
A Detached Zero Index Metamaterial Lens for Antenna Gain Enhancement
Fan-Yi Meng , Yue-Long Lyu , Kuang Zhang , Qun Wu and Joshua Le-Wei Li
In this paper, a detached zero index metamaterial lens (ZIML) consisting of metal strips and modified split ring resonators (MSRRs) is proposed for antenna gain enhancement. The effective permittivity and permeability of the detached ZIML are designed to synchronously approach zero, which leads the ZIML to having an effective wave impedance matching with air and near-zero index simultaneously. As a result, neither does the detached ZIML need to be embedded in horns aperture nor depends on auxiliary reflectors in enhancing antenna gain, which is quite different from conventional ZIMLs. Moreover, the distance between antenna and the detached ZIML slightly affect the gain enhancement, which further confirms that the ZIML can be detached from antennas. Simulated results show that the effective refractive index of the detached ZIML is near zero in a broad frequency range where the effective relative wave impedance is close to 1. The detached ZIML is fabricated and tested by placing it in front of an H-plane horn antenna. One finds that evident gain enhancement is obtained from 8.9 GHz to 10.8 GHz and the greatest gain enhancement reaches up to 4.02 dB. In addition, the detached ZIML can also work well at other frequencies by adjusting its geometric parameters to scale, which is demonstrated by designing and simulating two detached ZIMLs with center frequencies of 2.4 GHz and 5.8 GHz, respectively.
2012-10-05
PIER B
Vol. 44, 383-403
1-d Inversion of Triaxial Induction Logging in Layered Anisotropic Formation
Zhijuan Zhang , Ning Yuan and Ce Richard Liu
In this paper, we present a one-dimensional (1-D) inversion algorithm for triaxial induction logging tools in multi-layered transverse isotropic (TI) formation. A non-linear least-square model based on Gauss-Newton algorithm is used in the inversion. Cholesky factorization is implemented to improve the stability and the reliability of the inversion. Zero-D inversion is conducted at the center of each layer to provide a reasonable initial guess for the best efficiency of the inversion procedure. Cross components are used to provide sufficient information for determining the boundaries in the initial guess. It will be illustrated that using all the nine components of the conductivity/resistivity yield more reliable inversion results and even faster convergence than using only the diagonal components. The resultant algorithm can be used to obtain various geophysical parameters such as layer boundaries, horizontal and vertical resistivity, dipping angle and rotation angle etc. from triaxial logging data automatically without any priori information. Several synthetic examples are presented to demonstrate the capability and reliability of the inversion algorithm.
2012-10-05
PIER C
Vol. 33, 145-156
A 2.45 GHz Reentarnt Coaxial Cavity for Liguid Sterilization Based on Non-Thermal Microwave Effect
Yuling Zhang , Bao-Qing Zeng and Hai Zhang
According to the intracellular electromanipulation model, bacteria can be killed at as high as 106 V/m electrical fields on microwave band. We designed and constructed a modified microwave coaxial cavity resonator for liquid sterilization. The cavity could concentrate the field on a very small area, and the liquid can pass it in milliseconds. The bacteria can be killed by the very high field, but with a slight temperature increase. The designed resonator is simulated and analyzed by the electromagnetic simulation code, the results indicated that when the input power reaches 100 W, the electric field on the area of liquid can reach 106 V/m. Preliminary experimental results indicated that when the input power was 100W, the bactericidal rate was > 90%, and the temperature of the liquid only increased 8.6°C.
2012-10-05
PIER
Vol. 132, 443-461
Kalman Filter for Removal of Scalloping and Inter-Scan Banding in Scansar Images
Mahboob Iqbal , Jie Chen , Wei Yang , Pengbo Wang and Bing Sun
Spaceborne synthetic aperture radar (SAR) plays more and more important role in Earth observation science, especially with ScanSAR mode which provides wide-swath coverage with moderate resolution. However, scalloping and inter-scan banding (ISB) are two major artifacts, which signi cantly degrade the quality of ScanSAR images. In this paper, a novel technique for removal of scalloping and ISB in ScanSAR images is proposed. Scalloping and ISB artifacts are modeled by two-dimensional gain and o set parameters varying as function of both azimuth time and range position. The gain and o set parameters can be split into azimuth and range components. The variations of gain/o set with respect to azimuth and range positions would represent scalloping and ISB artifacts respectively. In the proposed technique, recursive and minimum mean square error (MMSE) estimates of azimuth gain/o set parameters are found out by using Kalman lter for each azimuth location in a subswath by considering corresponding range samples as observation vector. Subsequently, range gain/o set parameters causing ISB artifacts are estimated by using Kalman lter for each range positions by considering azimuth samples as observation vector. The MMSE estimates of gain/o set parameters are used to directly remove scalloping and ISB artifacts. The proposed scheme was applied on simulated as well as calibrated real ScanSAR images. The experimental results exhibited the potential of proposed technique to be used as post processing tool for enhancing ScanSAR image quality.
2012-10-05
PIER
Vol. 132, 425-441
Retrieval of Effective Electromagnetic Parameters of Isotropic Metamaterials Using Reference-Plane Invariant Expressions
Ugur Cem Hasar , Joaquim Jose Barroso , Cumali Sabah , Ibrahim Yucel Ozbek , Yunus Kaya , Deniz Dal and Tolga Aydin
Three different techniques are applied for accurate constitutive parameters determination of isotropic split-ring resonator (SRR) and SRR with a cut wire (Composite) metamaterial (MM) slabs. The first two techniques use explicit analytical calibration-dependent and calibration-invariant expressions while the third technique is based on Lorentz and Drude dispersion models. We have tested these techniques from simulated scattering (S-) parameters of two classic SRR and Composite MM slabs with various level of losses and different calibration plane factors. From the comparison, we conclude that whereas the extracted complex permittivity of both slabs by the analytical techniques produces unphysical results at resonance regions, that by the dispersion model eliminates this shortcoming and retrieves physically accurate constitutive parameters over the whole analyzed frequency region. We argue that incorrect retrieval of complex permittivity by analytical methods comes from spatial dispersion effects due to the discreteness of conducting elements within MM slabs which largely vary simulated S-parameters in the resonance regions where the slabs are highly spatially dispersive.