Vol. 35
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-10-11
A Bandpass Filter with Compact Size and Extended Stopband Using Closed-Loop Transmission-Lines and Short-Circuited Stubs
By
Progress In Electromagnetics Research Letters, Vol. 35, 83-88, 2012
Abstract
A novel 3-pole bandpass filter (BPF) based on microstrip loaded ring resonators (LRRs) is proposed. Each resonator is composed by a closed-loop transmission line and a short-circuited stub. By properly adjusting the impedance and the electrical length of each resonator, the proposed circuit may be made compact (over 93.7% smaller than a conventional ring resonator) and its stopband may be extended simultaneously. Each resonator exhibits an area of 0.0727 λg x 0.079 λg where λg is the guided wave length. A BPF at the center frequency of f0=1.9 GHz with stopband extended up to 7.8 GHz (=4f0) is developed showing good agreement between simulation and experimental results.
Citation
Johanny Alberto Escobar-Pelaez, Jose Luis Olvera Cervantes, Alonso Corona-Chavez, and Humberto Lobato-Morales, "A Bandpass Filter with Compact Size and Extended Stopband Using Closed-Loop Transmission-Lines and Short-Circuited Stubs," Progress In Electromagnetics Research Letters, Vol. 35, 83-88, 2012.
doi:10.2528/PIERL12090309
References

1. Corona-Chavez, A., J. R. Reyes-Ayona, D. V. B. Murthy, and J. L. Olvera-Cervantes, "Miniaturized forced-mode ring resonator with capacitive loading," Progress In Electromagnetics Research Letters, Vol. 31, 65-73, 2012.
doi:10.2528/PIERL12012305

2. Lu, X., X Guo, S. Jin, X. Zhang, H. Peng, M. Li, B. Wei, and B. Cao, "UHF band ultra-narrowband superconducting filter with double U-type secondary coupling structure and Wireless Components Letters," IEEE Microwave, Vol. 19, 707-709, 2009.

3. Zagoya-Mellado, I., A. Corona-Chavez, and I. Llamas-Garro, "Miniaturized metamaterial filters using ring resonators," IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-speed Interconnects, IMWS 2009, 45-48, 2009.
doi:10.1109/IMWS.2009.4814906

4. Liang, C., W. Chang, and C. Chang, "Compact microstrip band-pass filters using miniaturized quarter-wavelength resonators," 2010 Asia-Pacific Microwave Conference Proceedings (APMC), 263-266, 2010.

5. Deng, P., S. Lin, Y. Lin, C. Wang, and C. Chen, "Microstrip bandpass filters with dissimilar resonators for suppression of spurious responses," 2005 European Microwave Conference,, Vol. 2, Oct. 2005.

6. Afkhami, A. and M. Tayarani, "Spurious response suppression in hairpin filter using CSRR merged in the filter structure," Progress In Electromagnetics Research C, Vol. 11, 137-146, 2009.
doi:10.2528/PIERC09102001

7. Vidhya, K. and T. Jayanthy, "Design of microstrip hairpin band pass filter using defected ground structure and open stubs," International Conference on Information and Electronics Engineering, Vol. 6, 268-272, 2011.

8. Corona-Chavez, A., M. J. Lancaster, and T. S. Hieng, "HTS quasi-elliptic filter using capacitive-loaded cross-shape resonators with low sensitivity to substrate thickness," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 117-120, 2007.
doi:10.1109/TMTT.2006.888577

9. Hong, J.-S. and M. J. Lancaster, "Microstrip Filters for RF/Microwave Applications," John Wiley & Sons, Inc., 2001.