1. Nicolaides, R. A. and D. Q. Wang, "Helicity and variational principles for Maxwell's equations," Int. J. Electron., Vol. 54, 861-864, 1983.
doi:10.1080/00207218308938781 Google Scholar
2. Cockburn, B., F. Li, and C. W. Chi, "Locally divergence-free discontinuous Galerkin methods for the Maxwell equations," Journal of Computational Physics, Vol. 194, No. 2, 588-610, 2004.
doi:10.1016/j.jcp.2003.09.007 Google Scholar
3. Sheu, W. H., Y. W. Hung, M. H. Tsai, P. H. Chiu, and J. H. Li, "On the development of a triple-preserving Maxwell's equations solver in non-staggered grids ," Int. J. Numer. Meth. Fluids, Vol. 63, 1328-1346, 2010. Google Scholar
4. Sheu, W. H., L. Y. Liang, and J. H. Li, "Development of an explicit symplectic scheme that optimizes the dispersion-relation equation of the Maxwell's equations ," Communications in Computational Physics, Vol. 13, No. 4, 1107-1133, 2013. Google Scholar
5. Yee, K. S., "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic meida," IEEE Transactions on Antenna Propagation, Vol. 4, No. 3, 302-307, 1966. Google Scholar
6. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Optical Tech. Lett., Vol. 27, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
7. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
8. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
9. Wei, B., S. Q. Zhang, F. Wang, and D. Ge, "A novel UPML FDTD absorbing boundary condition for dispersive media, waves in random and complex media," Journal of Mathematical Physics, Vol. 20, No. 3, 511-527, 2010. Google Scholar
10. Luebbers, R. J., F. P. Huusberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116 Google Scholar
11. Anderson, N. and A. M. Arthurs, "Helicity and variational principles for Maxwell's equations," Int. J. Electron, Vol. 54, 861-864, 1983.
doi:10.1080/00207218308938781 Google Scholar
12. Gao, L., B. Zhang, and D. Liang, "The splitting finite-difference time-domain methods for Maxwell's equations in two dimensions," J. Comput. Applied Math, Vol. 205, 207-230, 2007.
doi:10.1016/j.cam.2006.04.051 Google Scholar
13. Wei, B., X. Y. Li, F. Wang, and D. Ge, "A finite difference time domain absorbing boundary condition for general frequency-dispersive media," Acta Physica Sinica, Vol. 58, No. 7, 6174-6178, 2009. Google Scholar
14. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics," J. Chem. Phys, Vol. 9, 341, 1941.
doi:10.1063/1.1750906 Google Scholar
15. Kelley, F. and R. J. Luebber, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 6, 1966. Google Scholar