Vol. 132
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-15
Development of a Symplectic Scheme with Optimized Numerical Dispersion-Relation Equation to Solve Maxwell's Equations in Dispersive Media
By
Progress In Electromagnetics Research, Vol. 132, 517-549, 2012
Abstract
In this paper an explicit finite-difference scheme is developed in staggered grids for solving the Maxwell's equations in time domain. We are aimed to preserve the discrete zero-divergence condition in the electrical and magnetic fields and conserve the inherent laws in non-dispersive simple media all the time using the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme for the time derivative terms. The spatial derivative terms in the semi-discretized Faraday's and Ampere's equations are then approximated to get an accurate numerical dispersion relation equation that governs the numerical angular frequency and the wavenumbers for the Maxwell's equations defined in two space dimensions. To achieve the goal of getting the best dispersive characteristics in the chosen grid stencil, a fourth-order accurate space centered scheme with the ability of minimizing the difference between the exact and numerical dispersion relation equations is proposed. Our emphasis is placed on the accurate modeling of EM waves in the dispersive media of the Debye, Lorentz and Drude types. Through the computational exercises, the proposed dual-preserving Maxwell's equation solver is computationally demonstrated to be efficient for use to predict the long-term accurate wave solutions in a medium belonging either to a frequency independent or to a dependent type.
Citation
Tony Wen-Hann Sheu, Rih Yang Chung, and Jia-Han Li, "Development of a Symplectic Scheme with Optimized Numerical Dispersion-Relation Equation to Solve Maxwell's Equations in Dispersive Media," Progress In Electromagnetics Research, Vol. 132, 517-549, 2012.
doi:10.2528/PIER12080901
References

1. Nicolaides, R. A. and D. Q. Wang, "Helicity and variational principles for Maxwell's equations," Int. J. Electron., Vol. 54, 861-864, 1983.
doi:10.1080/00207218308938781

2. Cockburn, B., F. Li, and C. W. Chi, "Locally divergence-free discontinuous Galerkin methods for the Maxwell equations," Journal of Computational Physics, Vol. 194, No. 2, 588-610, 2004.
doi:10.1016/j.jcp.2003.09.007

3. Sheu, W. H., Y. W. Hung, M. H. Tsai, P. H. Chiu, and J. H. Li, "On the development of a triple-preserving Maxwell's equations solver in non-staggered grids ," Int. J. Numer. Meth. Fluids, Vol. 63, 1328-1346, 2010.

4. Sheu, W. H., L. Y. Liang, and J. H. Li, "Development of an explicit symplectic scheme that optimizes the dispersion-relation equation of the Maxwell's equations ," Communications in Computational Physics, Vol. 13, No. 4, 1107-1133, 2013.

5. Yee, K. S., "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic meida," IEEE Transactions on Antenna Propagation, Vol. 4, No. 3, 302-307, 1966.

6. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Optical Tech. Lett., Vol. 27, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

7. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

8. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

9. Wei, B., S. Q. Zhang, F. Wang, and D. Ge, "A novel UPML FDTD absorbing boundary condition for dispersive media, waves in random and complex media," Journal of Mathematical Physics, Vol. 20, No. 3, 511-527, 2010.

10. Luebbers, R. J., F. P. Huusberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116

11. Anderson, N. and A. M. Arthurs, "Helicity and variational principles for Maxwell's equations," Int. J. Electron, Vol. 54, 861-864, 1983.
doi:10.1080/00207218308938781

12. Gao, L., B. Zhang, and D. Liang, "The splitting finite-difference time-domain methods for Maxwell's equations in two dimensions," J. Comput. Applied Math, Vol. 205, 207-230, 2007.
doi:10.1016/j.cam.2006.04.051

13. Wei, B., X. Y. Li, F. Wang, and D. Ge, "A finite difference time domain absorbing boundary condition for general frequency-dispersive media," Acta Physica Sinica, Vol. 58, No. 7, 6174-6178, 2009.

14. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics," J. Chem. Phys, Vol. 9, 341, 1941.
doi:10.1063/1.1750906

15. Kelley, F. and R. J. Luebber, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 6, 1966.