1. Weiss, C. J. and G. A. Newman, "Electromagnetic induction in a fully 3-D anisotropic earth," Geophysics, Vol. 67, No. 4, 1104-1114, Jul. 2002.
doi:10.1190/1.1500371 Google Scholar
2. Abubakar, A., T. M. Habashy, V. Druskin, L. Knizhnerman, S. Davydycheva, and S. Davydycheva, "A 3D parametric inversion algorithm for tri-axial induction data," Geophysics, Vol. 71, No. 1, G1-G9, Jan. 2006.
doi:10.1190/1.2168009 Google Scholar
3. Cheryauka, A. B. and M. S. Zhdanov, "Fast modeling of a tensor induction logging response in a horizontal well in inhomogeneous anisotropic formations," SPWLA 42nd Annual Logging Symposium, Jun. 2001. Google Scholar
4. Yu, L., B. Kriegshauser, O. Fanini, and J. Xiao, "A fast inversion method for multicomponent induction log data," 71st Annual International Meeting, SEG, Expanded Abstracts, 361-364, 2001. Google Scholar
5. Lu, X. and D. Alumbaugh, "One-dimensional inversion of three component induction logging in anisotropic media," 71st Annual International Meeting, SEG, Expanded Abstracts, 376-380, 2001. Google Scholar
6. Zhang, Z., L. Yu, B. Kriegshauser, and L. Tabarovsky, "Determination of relative angles and anisotropic resistivity using multicomponent induction logging data," Geophysics, Vol. 69, 898-908, Jul. 2004. Google Scholar
7. Wang, H., T. Barber, R. Rosthal, J. Tabanou, B. Anderson, and T. M. Habashy, "Fast and rigorous inversion of triaxial induction logging data to determine formation resistivity anisotropy, bed boundary position, relative dip and azimuth angles," 73rd Annual International Meeting, SEG, Expanded Abstracts, 514-517, 2003. Google Scholar
8. Abubakar, A., P. M. van den Berg, and S.Y. Semenov, "Two- and three-dimensional algorithms for microwave imaging and inverse scattering," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 209-231, 2003.
doi:10.1163/156939303322235798 Google Scholar
9. Davydycheva, S., V. Druskin, and T. M. Habashy, "An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media," Geophysics, Vol. 68, 1525-1536, Sep. 2003.
doi:10.1190/1.1620626 Google Scholar
10. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetic Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702 Google Scholar
11. Zhong, L. L., J. Ling, A. Bhardwaj, S. C. Liang, and R. C. Liu, "Computation of triaxial induction logging tools in layered anisotropic dipping formations," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 4, 1148-1163, Mar. 2008.
doi:10.1109/TGRS.2008.915749 Google Scholar
12. Wang, H. M., S. Davydycheva, J. J. Zhou, M. Frey, T. Barber, A. Abubakar, and T. Habashy, "Sensitivity study and inversion Sensitivity study and inversion formation," SEG Las Vegas 2008 Annual Meeting, 284-288, University of Houston, 2008. Google Scholar
13. Gill, P. E. and W. Murray, "Newton-type methods for unconstrained and linearly constrained optimization," Mathematical Programming, Vol. 28, 311-350, Jul. 1974.. Google Scholar
14. Zhdanov, M., D. Kennedy, and E. Peksen, "Foundations of tensor induction well-logging," Petrophysics, Vol. 42, 588-610, 2001. Google Scholar
15. Hans, W., "The golden section. Peter hilton trans," The Mathematical Association of America, 2001. Google Scholar
16. Anderson, B. I., T. D. Barber, and T. M. Habashy, "The interpretation and inversion of fully triaxial induction data; a sensitivity study," SPWLA 43rd Annual Logging Symposium, 2002. Google Scholar
17. Rosthal, R., T. Barber, and S. Bonner, "Field test results of an experimental fully-triaxial induction tool," SPWLA 44th Annual Logging Symposium, 2003. Google Scholar
18. Yuan, N., X. C. Nie, and R. Liu, "Improvement of 1-D simulation codes for induction, MWD and triaxial tools in Multi-layered dipping beds," Well Logging Laboratory Technical Report, 32-71, Oct. 2010. Google Scholar