1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
2. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media-media with negative parameters, capable of supporting backward waves," Microw. Opt. Technol. Lett., Vol. 31, 129-133, 2001.
doi:10.1002/mop.1378 Google Scholar
3. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability ," IEEE Antennas Wireless Propagat. Lett., Vol. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576 Google Scholar
4. Alu, A. and N. Engheta, "Radiation from a travelling-wave current sheet at the interface between a conventional material and a metamaterial with negative permittivity and permeability," Microw. Opt. Technol. Lett., Vol. 35, No. 6, 460-463, 2002.
doi:10.1002/mop.10638 Google Scholar
5. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604 Google Scholar
6. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
7. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011. Google Scholar
8. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, 075153, 2011.
doi:10.1103/PhysRevB.84.075153 Google Scholar
9. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
10. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
11. Boughriet, A.-H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032 Google Scholar
12. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials ," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242 Google Scholar
13. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1563-1574, 2010.
doi:10.1163/156939310792149759 Google Scholar
14. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials ," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2257-2267, 2009.
doi:10.1109/TMTT.2009.2027160 Google Scholar
15. Hasar, U. C. and Y. Kaya, "Reference-independent microwave method for constitutive parameters determination of liquid materials from measured scattering parameters ," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1708-1717, 2011.
doi:10.1163/156939311797164756 Google Scholar
16. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
17. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
18. Li, Z., K. Aydin, and E. Ozbay, "Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coe±cients ," Phys. Rev. E, Vol. 79, 026610, 2009.
doi:10.1103/PhysRevE.79.026610 Google Scholar
19. Lubkowski, G., R. Schuhmann, and T. Weiland, "Extraction of effective metamaterial parameters by parameter fitting of dispersive models," Microw. Opt. Technol. Lett., Vol. 49, No. 2, 285-288, 2007.
doi:10.1002/mop.22105 Google Scholar
20. Markos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials ," Opt. Express, Vol. 11, 649-661, 2003.
doi:10.1364/OE.11.000649 Google Scholar
21. Hasar, U. C. and J. J. Barroso, "Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials ," Progress In Electromagnetics Research, Vol. 112, 109-124, 2011. Google Scholar
22. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489 Google Scholar
23. Mattiucci, N., G. D'Aguanno, N. Akozbek, M. Scalora, and M. J. Blomer, "Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics," Opt. Commun., Vol. 283, 1613-1620, 2010.
doi:10.1016/j.optcom.2009.07.006 Google Scholar
24. Szabo, Z., G.-H. Park, R. Hedge, and E.-P. Li, "Unique extraction of metamaterial parameters based on Kramers-Kronig relationship ," IEEE Trans. Microw. Theory Tech., Vol. 58, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310 Google Scholar
25. Barroso, J. J. and U. C. Hasar, "Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods," Int. J. Infrared Milli. Waves, Vol. 32, 857-866, 2011. Google Scholar
26. Luukkonen, O., S. I. Maslovski, and S. A. Tretyakov, "A stepwise Nicolson-Ross-Weir-based material parameter extraction method," IEEE Antennas Propag. Lett., Vol. 10, 1295-1298, 2011.
doi:10.1109/LAWP.2011.2175897 Google Scholar
27. Hasar, U. C., J. J. Barroso, C. Sabah, and Y. Kaya, "Resolving phase ambiguity in the inverse problem of reflection-only measurement methods ," Progress In Electromagnetics Research, Vol. 129, 405-420, 2012. Google Scholar
28. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306 Google Scholar
29. Hasar, U. C., J. J. Barroso, M. Ertugrul, C. Sabah, and B. Cavusoglu, "Application of a useful uncertainty analysis as a metric tool for assessing the performance of electromagnetic properties retrieval methods of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 128, 365-380, 2012. Google Scholar
30. Xu, S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011. Google Scholar
31. Hasar, U. C., "A new method for evaluation of thickness and monitoring its variation of medium- and low-loss materials," Progress In Electromagnetics Research, Vol. 94, 403-418, 2009.
doi:10.2528/PIER09061504 Google Scholar