Search Results(13667)

2007-10-17
PIER
Vol. 78, 421-436
High Gain Rectangular Broad Band Microstrip Antenna with Embedded Negative Capacitor and Chip Resistor
Adnan Kaya
Various communication systems require single radiating element operating in wide band. In this paper, a novel active integrated single microstrip antenna is proposed and its radiation pattern and gain performance is optimized with analysis. The reactive loading is provided by a negative capacitor section embedded within the patch. The active negative capacitor is made of a field-effect transistor that exhibits negative resistance as well as capacitance. It can, therefore, compensate the loss of an inductor. A microstrip patch operating at 10.5 GHz having 12.2% bandwidth has been utilized as a reference antenna. With the proposed antenna design, the antenna radiation pattern can be as large as about 1.5 times that of an antenna without reactive loading. In addition, it has been shown that active compensation significantly improves the matching level.
2007-10-10
PIER
Vol. 79, 91-106
Monte Carlo Integration Technique for the Analysis of Electromagnetic Scattering from Conducting Surfaces
Mrinal Mishra and Nisha Gupta
A new numerical method is proposed for the analysis of electromagnetic scattering from conducting surfaces. The method involves Monte Carlo integration technique in the Method of Moments solution of the Electric Field Integral Equation for determining the unknown induced current distribution on the surface of the scatterers. The unknown current distribution is represented in terms of a modified entire domain polynomial basis functions satisfying the appropriate edge conditions and symmetry conditions of the problem. This leads to very small order of the Method of Moments matrix as compared to the conventional sub-domain basis functions. The accuracy and the effectiveness of the method are demonstrated in three cases of scattering from conducting circular disks and results are compared with the solutions using conventional sub-domain basis functions. While the sub domain analysis is incapable of handling large domain problems, the proposed method overcomes this limitation. It is also observed that the proposed method is superior to conventional sub-domain method in dealing with singularity problem of the integral equation easily and efficiently.
2007-10-10
PIER
Vol. 79, 75-90
Pattern Synthesis of Conformal Antenna Array by the Hybrid Genetic Algorithm
Zhi Xu , Hong Li , Qi-Zhong Liu and Jian-Ying Li
Desired far-field radiation patterns of 5 × 11 conformal antenna array are synthesized using a hybrid genetic algorithm (HGA), which combines the simplified quadratic interpolation (SQI) method and the real-coded genetic algorithm (RCGA). This hybrid genetic algorithm is shown to outperform standard genetic algorithm (GA) when used to synthesize amplitude weights of the elements to satisfy specified deep notches, nulls and average sidelobe level constraints. The HGA procedure appears to be a high effective means to compensate the mutual coupling effects on the individual element patterns for the conformal antenna array.
2007-10-08
PIER
Vol. 79, 59-74
Modal Analysis of Extraordinary Transmission through an Array of Subwavelength Slits
Galia Ghazi and Mahmoud Shahabadi
Using eigen-modes of a one-dimensional array of slits together with a mode matching technique, we investigate the extraordinary transmission through a subwavelength grating. The analysis serves to determine the contribution of various transmission mechanisms to the overall transmission. It is shown that surface plasmon polaritons excited on the input interface of the grating at certain wavelengths can absorb the incident power and thus reduce the total transmitted power. We also examine the characteristics of the different types of modes involved in the transmission through a metallic grating.
2007-10-08
PIER
Vol. 79, 47-58
Scattering from Semi-Elliptic Channel Loaded with Impedance Elliptical Cylinder
Mehdi Zahedi and Mohammad Abrishamian
Analytical TM scattering from semi-elliptic channel loaded with confocal elliptic cylindrical impedance core is investigated. Fields in every regions are expressed appropriately in terms of Mathieu functions. Applying boundary conditions at the impedance core and across different regions of channels and using orthogonality of angular Mathieu functions result in two simultaneous set of equations which would be solved numerically.
2007-10-05
PIER
Vol. 79, 39-46
A Novel Design of Dual Circularly Polarized Antenna Fed by L-Strip
Gao-Lei Wu , Wei Mu , Gang Zhao and Yong-Chang Jiao
A novel design of dual circularly polarized antenna is proposed. By etching cross slots on the patch, circular polarization (CP) is achieved. The patch is fed by two L-strips which provide wide impedance bandwidth and high isolation level. Polarization diversity between left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP) is provided by switching the two ports and both LHCP and RHCP signals can be received simultaneously. The experimental results show that the 3 dB axial ratio CP bandwidth of the proposed design is increased two times, as compared to a referential CP antenna fed by L-strip. The details of experimental results for the proposed design are presented and discussed.
2007-10-05
PIER
Vol. 79, 23-38
Quad Ridged Horn Antenna for UWB Applications
Ramin Dehdasht-Heydari , Hamid Reza Hassani and Ali Reza Mallahzadeh
This paper describes a novel design of a dual-polarized ultra wideband horn antenna. Based on a VSWR ≤ 2.6, the bandwidth of the designed UWB horn antenna is from 8-18 GHz, most suitable for radar systems. A newcoaxial line to quadruple-ridged waveguide transition and a newtec hnique for tapering the flared section of the horn is introduced to improve the return loss and matching of the impedance, respectively. Results of simulation for VSWR, isolation, gain and radiation pattern of designed horn antenna are presented and discussed.
2007-10-05
PIER
Vol. 79, 1-21
Closed–Form Solution to the Scattering of a Skew Strip Field by Metallic PIN in a Slab
Constantinos Valagiannopoulos
A tiny metallic cylinder placed into a planar dielectric waveguide scatters the field developed by a current-carrying skew strip centralized at the middle of the slab. Due to the small size of the scatterer, the induced surface current is taken independent of the azimuthal angle. The Green's function of the problem is expressed in closed form and it is inserted to the scattering integral after the polar equation of the strip has been determined. The behavior of nearfield quantities in the slab, with respect to geometrical and material parameters, is observed and examined.
2007-10-04
PIER
Vol. 78, 377-392
A Theoretical Study of Electromagnetic Transients in a Large Plate Due to Voltage Impact Excitation
Saurabh Kumar Mukerji , Ghanshyam Singh , Sandeep Goel and Seema Manuja
Maxwell's equations are solved to determine transient electromagnetic fields inside as well as outside of a large conducting plate of an arbitrary thickness. The plate is carrying a uniformly distributed excitation winding on its surfaces. Transient fields are produced due to sudden application of a d.c. voltage at the terminals of the excitation winding. On the basis of a linear treatment of this initial value problem it is concluded that the transient fields may decay at a faster rate for conducting plates with smaller values of relaxation time. It is also shown that the growth of flux in a perfectly nonconducting plate is a piecewise linear function of time and the current in its excitation winding is a series of stepfunction of time.
2007-10-03
PIER
Vol. 78, 393-419
Novel Microstrip Hairpinline Narrowband Bandpass Filter Using via Ground Holes
Azhar Hasan and Ahmed Nadeem
Abstract-In this paper, we present a novel improved hairpinline microstrip narrowband bandpass filter with via ground holes. The new filter design methodology is derived from conventional hairpinline filter design. This design methodology incorporates use of λ/8 resonators, thereby reducing the size of the filter by 35% as compared to the conventional design. An analysis is presented to show the effects of tap point height and microstrip width on fundamental parameters of filter and subsequent relationships are developed. Through use of via ground holes and a wider microstrip line for resonators, 3 dB Fractional Bandwidth (FBW) less than 2%, Insertion Loss (IL) less than 1.6 dB and Return Loss (RL) better than 40 dB is achieved with midband center frequency 1 GHz. Spurious response suppression is achieved till 3ƒ0. Robustness of this design approach is demonstrated by designing filters on two more substrates having εr 2.17 and 9.2. As low as 0.48% FBW was achieved by using different substrates. The design approach is successfully tested for center frequency upto 2 GHz beyond which folding the resonator becomes practically difficult. Finally, a bandpass filter is designed with this design methodology and fabricated using FR4 substrate. S-parameter measurements show a good agreement with the simulated results.
2007-09-29
PIER
Vol. 78, 361-376
Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using HE's Homotopy Perturbation Method
Mehdi Dehghan and Fatemeh Shakeri
In this research, an integro-differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered.The homotopy perturbation method (HPM) is used for solving this equation.HPM is an analytical procedure for finding the solutions of problems which is based on the constructing a homotopy with an imbedding parameter p that is considered as a small parameter.The results of applying this procedure to the integro-differential equation with time-periodic coefficients show the high accuracy, simplicity and efficiency of this method.
2007-09-29
PIER
Vol. 78, 349-360
Pulse Preserving Capabilities of Printed Circular Disk Monopole Antennas with Different Substrates
Qi Wu , Rong-Hong Jin and Jun-Ping Geng
This paper presents a theoretical investigation on the pulse preserving capabilities of the CPW-fed circular disk monopole antennas at the assistance of correlation factors. The distortions of the radiated signals, which are mainly caused by the bandwidth mismatch between the antennas and the source pulse, are alleviated by using suitable source pulse. The ringing and pulse-width spreading of the radiated signals caused by the energy-storage effects of the dielectric substrate are discussed in detail. Possible improvement solutions and an example are provided. The improvement of the correlation factors introduced by selecting suitable substrate parameters is about 7% on an average. With the physical insight and design example, the proposed solutions are expected to find applications in the design of printed UWB monopole antennas for better pulse preserving capabilities.
2007-09-29
PIER
Vol. 78, 329-347
Field Analysis of Dielectric Waveguide Devices Based on Coupled Transverse-Mode Integral Equation - Mathematical and Numerical Formulations
Hung-Wen Chang and Meng-Huei Sheng
We propose an integral-equation formulation for analyzing EM field of 2-D dielectric waveguide devices. The complex 2-D device is first divided into slices of 1-D horizontally layered structures. The entire EM solutions are determined by transverse field functions on the interfaces between slices. These functions are governed by a system of integral equations whose kernels are constructed from layer modes of each slice. These unknown tangential field functions are expanded as some linear combination of known basis functions. Various waveguide devices such as multi-mode interferometers, waveguide crossing and quasi-adiabatic tapered waveguides can be formulated and studied using present formulation.
2007-09-29
PIER
Vol. 78, 321-328
Miniaturized Circularly-Polarized Antenna Using Tapered Meander-Line Structure
Jian-Feng Li , Bao-Hua Sun , Hai-Jin Zhou and Qi-Zhong Liu
A novel miniaturized circularly-polarized antenna is presented. By using tapered meander-line structure, the designed antenna has a size reduction rate of 96% compared with a traditional turnstile dipole antenna. The unequal lengths of the two meanderline dipoles are properly adjusted to achieve a circularly polarized radiation. Furthermore, the impedance matching is effectively realized by a lumped matching network. A prototype of the antenna with a size of 64 × 64mm2 has been implemented and tested. Good agreement is achieved between the simulated results and the measured results, which shows that the axial ratio is less than 3.0 dB and the VSWR less than 2.0:1 in the frequency range of 450 ± 1.5 MHz.
2007-09-26
PIER
Vol. 78, 301-320
High Bit Rate Dense Dispersion Managed Optical Communication Systems with Distributed Amplification
Manoj Mishra and Swapan Konar
In this paper we have investigated optical pulse propagation in a dense dispersion managed (DM) optical communication system operating at a speed of 100 Gb/s and more taking into account of the effects of third order dispersion, intra-pulse Raman scattering and self steepening. Using perturbed variational formulation, we have obtained several ordinary differential equations for various pulse parameters. These equations have been solved numerically to identify launching criteria in the first DM cell of the system. Full numerical simulation of the nonlinear Schr¨odinger equation has been employed to identify effects of higher order terms on pulse propagation and to investigate the intra-pulse interaction. The roles played by these higher order linear and nonlinear effects have been identified. It has been found that the shift of the pulse centre due to intra-pulse Raman scattering increases with the increase in the distance of propagation and average dispersion. We have noticed that for higher value of average dispersion pulses travel less distance before collision than for lower average dispersion.
2007-09-25
PIER
Vol. 78, 285-300
Radiation from Open-Ended Circular Waveguides: A Formulation Based on the Incomplete Hankel Functions
Renato Cicchetti and Antonio Faraone
An analytical formulation based on physical optics is employed to determine the field and the radiated power distribution by open-ended circular waveguides. Using the incomplete Hankel functions, the line integrals yielding the electromagnetic field are evaluated in closed analytical form along the waveguide axis. It is shown that cylindrical waves are generated by the surface currents flowing on the waveguide walls, while spherical waves are produced by the currents and charges excited at the waveguide truncation. Cylindrical and spherical waves are shown to be responsible for the field synthesis in terms of waveguide modes and scattered fields at the waveguide mouth. Numerical results concerning the spatial distribution of the electromagnetic field and associated power density are compared with previously published results, showing the advantage of the incomplete Hankel functions formulation. Finally, the uniform asymptotic representation of the incomplete Hankel function is shown to be suitable to compute the field distribution on the waveguide axis except for the TE11 and TM01 modes.
2007-09-25
PIER
Vol. 78, 265-283
A Fuzzy Model for Computing Input Impedance of Two Coupled Dipole Antennas in the Echelon Form
Saeed Reza Ostadzadeh , Mohammad Soleimani and Majid Tayarani
In this paper, the previously introduced fuzzy modeling method is used to model the input impedance of two coupled dipole antennas in the echelon form. The initial data of two coupled dipole antennas in the parallel and collinear form, which are required for the model, are obtained using the MoM (Method of Moments). Then, the knowledge of two coupled dipole antennas in the echelon form is easily predicted based on the knowledge of two coupled dipole antennas in the parallel and collinear form and the concept of spatial membership functions. Comparing the results of the proposed model with MoM shows an excellent agreement with a vanishingly short execution time comparing with MoM.
2007-09-25
PIER
Vol. 78, 255-264
An Innovative Portable Ultra Wide Band Stereophonic Radio Direction Finder
Shubhendu Joardar , Minakshi Jaint , Vasudev Bandewar and Ashit Bhattacharya
A portable ultra wide band radio direction finder has been constructed based on the principle of stereophonic direction recognition of sound by human ears. The instrument consists of two log periodic antennas having identical electrical properties. They are positioned in a plane, preferably parallel to the ground. The directivities of the antennas are aligned at slightly different directions with respect to each other. Their output powers are compared at the source frequency for the respective polarizations. The back lobes of the antennas have been reduced by symmetrically positioning two metallic plates (reflectors) behind the antennas. The antennas, reflectors and a compass are mounted over a video camera stand such that they could be manually positioned in the azimuth. Since the antennas are of identical make, ideally the radiation pattern of either antennareflector combination should behave as a flipped image of the other set. For any particular polarization and frequency, the outputs from the antennas are compared with each other. The antenna assembly is rotated between 0 and 360 in the azimuth until the power difference gets minimized. This position relates to the direction of the source and is indicated on the compass, provided there exits a single radio source at that frequency.
2007-09-21
PIER
Vol. 78, 219-253
Time-Domain Theory of Metal Cavity Resonator
Geyi Wen
This paper presents a thorough study of the time-domain theory of metal cavity resonators. The completeness of the vector modal functions of a perfectly conducting metal cavity is first proved by symmetric operator theory, and analytic solution for the field distribution inside the cavity excited by an arbitrary source is then obtained in terms of the vector modal functions. The main focus of the present paper is the time-domain theory of a waveguide cavity, for which the excitation problem may be reduced to the solution of a number of modified Klein-Gordon equations. These modified Klein- Gordon equation are then solved by the method of retarded Green's function in order that the causality condition is satisfied. Numerical examples are also presented to demonstrate the time-domain theory. The analysis indicates that the time-domain theory is capable of providing an exact picture for the physical process inside a closed cavity and can overcome some serious problems that may arise in traditional time-harmonic theory due to the lack of causality.
2007-09-20
PIER
Vol. 78, 209-218
Two Novel Band-Notched UWB Slot Antennas Fed by Microstrip Line
Guang-Min Zhang , Jing-Song Hong and Bing-Zhong Wang
Two kinds of band-notched ultra wide-band slot antennas are proposed. Printed on a dielectric substrate of FR4with relative permittivity of 4.4 and fed by a 50Ω microstrip line, the proposed antennas introduce semicircular annular strips to reject the frequency band (5.15-5.85 GHz) limited by IEEE802.11a. The parameters which affect the performance of the antennas in terms of its frequency domain characteristics are investigated in this paper.