Vol. 78
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-09-29
Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using HE's Homotopy Perturbation Method
By
Progress In Electromagnetics Research, Vol. 78, 361-376, 2008
Abstract
In this research, an integro-differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered.The homotopy perturbation method (HPM) is used for solving this equation.HPM is an analytical procedure for finding the solutions of problems which is based on the constructing a homotopy with an imbedding parameter p that is considered as a small parameter.The results of applying this procedure to the integro-differential equation with time-periodic coefficients show the high accuracy, simplicity and efficiency of this method.
Citation
Mehdi Dehghan Fatemeh Shakeri , "Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using HE's Homotopy Perturbation Method," Progress In Electromagnetics Research, Vol. 78, 361-376, 2008.
doi:10.2528/PIER07090403
http://www.jpier.org/PIER/pier.php?paper=07090403
References

1. Abbasbandy, S., "A numerical solution of Blasius equation by Adomianís decomposition method and comparison with homotopy perturbation method," Chaos, Vol. 31, 257-260, 2007.

2. Abbasbandy, S., "Application of He's homotopy perturbation method to functional integral equations," Chaos, Vol. 31, 1243-1247, 2007.

3. Ariel, P. D., "The three-dimensional flow past a stretching sheet and the homotopy perturbation method," Comput. Math. Applic., 2006.

4. Belendez, A., T. Belendez, A.Marquez, and C.Neipp, "Application of He's homotopy perturbation method to conservative truly nonlinear oscillators," Chaos, 2006.

5. Cai, X.-C. and M.-S. Li, "Periodic solution of Jacobi elliptic equations by He's perturbation method," Computers and Mathematics with Applications, 2006.

6. Chowdhury, M.S.H.and I.Hashim, "Application of homotopy perturbation method to Klein-Gordon and sine- Gordon equations," Chaos, 2007.

7. Chowdhury, M.S.H., I.Hashim, and O.Ab dulaziz, "Application of homotopy perturbation method to nonlinear population dynamics models," Physics Letters A, Vol. 368, 251-258, 2007.
doi:10.1016/j.physleta.2007.04.007

8. Chowdhury, M.S.H.and I.Hashim, "Solutions of time-dependent Emden-Fowler type equations by homotopy perturbation method," Physics Letters A, Vol. 368, 305-313, 2007.
doi:10.1016/j.physleta.2007.04.020

9. Chun, C.and Y.Ham, "Newton-like iteration methods for solving non-linear equations," Commun. Numer. Meth. Engng., Vol. 22, 475-487, 2006.
doi:10.1002/cnm.832

10. Chun, C., "Integration using He's homotopy perturbation method," Chaos, Vol. 34, 1130-1134, 2007.

11. Cveticanin, L., "Homotopy perturbation method for pure nonlinear differential equation," Chaos, Vol. 30, 1221-1230, 2006.

12. Ganji, D.D.and M.Rafei, "Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method," Physics Letters A, Vol. 356, 131-137, 2006.
doi:10.1016/j.physleta.2006.03.039

13. Ganji, D.D.and A.Sadighi, "Application of homotopyperturbation and variational iteration methods to nonlinear heat transfer and porous media equations," Journal of Computational and Applied Mathematics, Vol. 207, 24-32, 2007.
doi:10.1016/j.cam.2006.07.030

14. Golbabai, A.and B.Keramati, "Solution of non-linear Fredholm integral equations of the first kind using modified homotopy perturbation method," Chaos, 2007.

15. Hashim, I.and M.S.H.Cho wdhury, "Adaptation of homotopy-perturbation method for numeric analytic solution of system of ODEs," Physics Letters A, 2007.

16. He, J. H., "Homotopy perturbation technique," Comput. Methods Appl. Mech. Eng., Vol. 178, 257-262, 1999.
doi:10.1016/S0045-7825(99)00018-3

17. He, J. H., "A coupling method of a homotopy technique and a perturbation technique for non-linear problems," Inter. J. Non-linear Mech., Vol. 35, 37-43, 2000.
doi:10.1016/S0020-7462(98)00085-7

18. He, J. H., "Homotopy perturbation method: a new nonlinear analytical technique," Appl. Math. Comput., Vol. 135, 73-79, 2003.
doi:10.1016/S0096-3003(01)00312-5

19. He, J. H., "The homotopy perturbation method for nonlinear oscillators with discontinuities," Applied Mathematics and Computation, Vol. 151, 287-292, 2004.
doi:10.1016/S0096-3003(03)00341-2

20. He, J. H., "Homotopy perturbatin method for nonlinear bifurcation problems," Int. J. Nonlinear Sci. Numer. Simul., Vol. 6, No. 2, 207-208, 2005.

21. He, J. H., "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Vol. 26695-700, 26695-700, 2005.

22. He, J. H., "Homotopy perturbation method for solving boundary value problems," Physics Letters A, Vol. 350, 87-88, 2006.
doi:10.1016/j.physleta.2005.10.005

23. Machado, J.M.and M.Tsuc hida, "Solutions for a class of integro-differential equations with time periodic coefficients," Appl. Math. E-Notes, Vol. 2, 66-71, 2002.

24. Mei, S.L.and S.W.Zhang, "Coupling technique of variational iteration and homotopy perturbation methods for nonlinear matrix differential equations," Computers and Mathematics with Applications, 2007.

25. Rafei, M., D.D.Ganji, and H.Daniali, "Solution of the epidemic model by homotopy perturbation method," Applied Mathematics and Computation.

26. Rajabi, A., "Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity," Physics Letters A, Vol. 187, 1056-1062, 2007.

27. Ramos, J. I., "Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method," Chaos, 2006.

28. Shakeri, F. and M. Dehghan, "Inverse problem of diffusion equation by He's homotopy perturbation method," Phys. Scr., Vol. 75, 551-556, 2007.
doi:10.1088/0031-8949/75/4/031

29. Siddiqui, A.M., A.Zeb, Q.K.Ghori, and A.M.Benharbit, "Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates," Chaos, 2006.

30. Song, L.and H.Zhang, "Application of the extended homotopy perturbation method to a kind of nonlinear evolution equations," Appl. Maths. and Computation, 2007.

31. Ozis, T.and A.Yildirim, "A note on He's homotopy perturbation method for van der Pol oscillator with very strong nonlinearity," Chaos, Vol. 34, 989-999, 2007.

32. Wang, Q., "Homotopy perturbation method for fractional KdV-Burgers equation," Chaos.

33. Yildirim, A. and T. Ozis, "Solutions of singular IVPs of Lane- Emden type by homotopy perturbation method," Physics Letters A, Vol. 369, 70-76, 2007.
doi:10.1016/j.physleta.2007.04.072

34. Yusufoglu, E., "A homotopy perturbation algorithm to solve a system of Fredholm-Volterra type integral equations," Math. Comput. Model., 2007.

35. Chatterjee, K.and J.P oggie, "A parallelized floating randomwalk algorithm for the solution of the nonlinear Poisson- Boltzman equation," Progress In Electromagnetics Research, Vol. 57, 237-252, 2006.
doi:10.2528/PIER05072802

36. Chiang, I.T.and W.C.Chew, "New formulation ans iterative solution for low-frequency volume integral equation," Journal ofEle ctromagnetic Waves and Applications, Vol. 19, No. 3, 289-306, 2005.
doi:10.1163/1569393054139633

37. Cinar, G.and A.B uyukaksoy, "A hybrid method for the solution of plane wave diffraction by an impedance loaded parallel plate waveguide," Progress In Electromagnetics Research, Vol. 60, 293-310, 2006.
doi:10.2528/PIER05120702

38. Saadatmandi, A., M.Razzaghi, and M.Dehghan, "Sinccollocation methods for the solution of Hallen's integral equation," Journal ofEle ctromagnetic Waves and Applications, Vol. 19, No. 2, 245-256, 2005.
doi:10.1163/1569393054497258

39. Ojeda, X. and L. Pichon, "Combining the finit element method and a Pade approximation for scattering analysis, application to radiated electromagnetic compatibility problems," Journal ofEle ctromagnetic Waves and Applications, Vol. 19, No. 10, 1375-1390, 2005.
doi:10.1163/156939305775525918

40. Khala j-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using finite difference method," Progress In Electromagnetics Research, Vol. 59, 187-198, 2006.
doi:10.2528/PIER05091201

41. Watanabe, K.and K.Kuto, "Numerical analysis of optical waveguides based on periodic fourier transform," Progress In Electromagnetics Research, Vol. 64, 1-21, 2006.
doi:10.2528/PIER06060802

42. Shi, Y. and C.-H. Liang, "Analysis of the double-negative materials using multi-domain pseudospectral time-domain algorithm," Progress In Electromagnetics Research, Vol. 51, 153-165, 2005.
doi:10.2528/PIER04092301

43. Tong, M.S., Y.Lu, Y.Chen, H.S.Kim, T.G.Chang, K.Kagoshima, and V.Krozer, "Study of stratified dielectric slab medium structures using pseudo-spectral time domain (PSTD) algorithm," Journal ofEle ctromagnetic Waves and Applications, Vol. 19, No. 6, 721-736, 2005.
doi:10.1163/1569393054069064

44. Zhao, J. X., "Numerical and analytical formulizations of the extended Mie theory for solving the sphere scattering problem," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 7, 967-983, 2006.
doi:10.1163/156939306776149815

45. Mouysset, V., P.A.Mazet, and P.Borderies, "A new approach to evaluate accurately and efficiently electromagnetic fields outside a bounded zone with time-domain volumic methods," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 6, 803-817, 2006.
doi:10.1163/156939306776143398