Vol. 78
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-10-03
Novel Microstrip Hairpinline Narrowband Bandpass Filter Using via Ground Holes
By
, Vol. 78, 393-419, 2008
Abstract
Abstract-In this paper, we present a novel improved hairpinline microstrip narrowband bandpass filter with via ground holes. The new filter design methodology is derived from conventional hairpinline filter design. This design methodology incorporates use of λ/8 resonators, thereby reducing the size of the filter by 35% as compared to the conventional design. An analysis is presented to show the effects of tap point height and microstrip width on fundamental parameters of filter and subsequent relationships are developed. Through use of via ground holes and a wider microstrip line for resonators, 3 dB Fractional Bandwidth (FBW) less than 2%, Insertion Loss (IL) less than 1.6 dB and Return Loss (RL) better than 40 dB is achieved with midband center frequency 1 GHz. Spurious response suppression is achieved till 3ƒ0. Robustness of this design approach is demonstrated by designing filters on two more substrates having εr 2.17 and 9.2. As low as 0.48% FBW was achieved by using different substrates. The design approach is successfully tested for center frequency upto 2 GHz beyond which folding the resonator becomes practically difficult. Finally, a bandpass filter is designed with this design methodology and fabricated using FR4 substrate. S-parameter measurements show a good agreement with the simulated results.
Citation
Azhar Hasan, and Ahmed Nadeem, "Novel Microstrip Hairpinline Narrowband Bandpass Filter Using via Ground Holes," , Vol. 78, 393-419, 2008.
doi:10.2528/PIER07091401
References

1. Cohn, S. B., "Parallel-coupled transmission-line-resonator filters," IRE Transactions on Microwave Theory and Techniques, Vol. MTT-6, No. 4, 223-231, 1958.
doi:10.1109/TMTT.1958.1124542

2. Matthaei, G. L., "Design of wide band (and narrow band) bandpass microwave filters on the IL basis," IRE Transactions on Microwave Theory and Techniques, Vol. MTT-8, No. 11, 310-314, 1960.

3. Chang, C. Y. and T. Itoh, "A modified parallel-coupled filter structure that improves the upper stop band rejection and response symmetry," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 2, 310-314, 1991.
doi:10.1109/22.102975

4. Riddle, A., "High performance parallel coupled microstrip filters," IEEE Microwave Theory and Technology Symposium Digest, 427-430, 1988.

5. Akhtarzad, S., T. R. Rowbotham, and P. B. Johns, "The design of coupled microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-23, No. 6, 486-492, 1975.
doi:10.1109/TMTT.1975.1128605

6. Pozar, D. M., Microwave Engineering, 2nd edition, Wliey, New York, 1998.

7. Collin, R. E., Foundations for Microwave Engineering, 2nd edition, IEEE Press, Wiley, New York, 1992.

8. Cristal, E. G. and S. Frankel, "Hairpin-line and hybrid hairpinline/ half-wave parallel-coupled-line filters," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-22, No. 11, 719-728, 1972.
doi:10.1109/TMTT.1972.1127860

9. Gysel, U. H., "New theory and design for hairpin-line filters," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-22, No. 5, 523-531, 1974.
doi:10.1109/TMTT.1974.1128273

10. Singh, K., R. Ramasubramanian, and S. Pal, "Coupled microstrip filters: Simple methodologies for improved characteristics, communication systems group," India EESOF User Group Meeting, 2005.

11. Bahl, I. J., Lumped Elements for RF and Microwave Circuits, Artech House, Boston, London, 2003.

12. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.

13. Wong, J. S., "Microstrip tapped line filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT- 27, No. 1, 44-50, 1979.
doi:10.1109/TMTT.1979.1129556

14. Hong, J.-S. and M. J. Lancaster, "Development of new microstrip pseudo-interdigital bandpass filters," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 8, 261-263, 1995.
doi:10.1109/75.401073

15. Hong, J.-S. and M. J. Lancaster, "Cross-coupled microstrip hairpin-resonator filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 1, 118-122, 1998.
doi:10.1109/22.654931

16. Gu, Q., RF System Design of Transceivers for Wireless Communications, Springer, 2005.

17. Jantaree, J.S. Kerdsumang, and P. Akkaraekthalin, "A microstrip bandpass filter using a symmetrical parallel coupled-line structure," The 9th Asia Pacific Conference on Communications, Vol. 2, 784-788, 2003.

18. Deng, P.-H., Y.-S. Lin, C.-H. Wang, and C. H. Chen, "Compact microstrip bandpass filters with good selectivity and stopband rejection," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 2, 533-539, 2006.
doi:10.1109/TMTT.2005.862709

19. Xiao, J.-K., S.-P. Li, and Y. Li, "Novel planar bandpass filters using single patch resonators with corner cuts," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1481-1493, 2006.
doi:10.1163/156939306779274327

20. Zhu, Y.-Z., Y.-J. Xie, and H. Feng, "Novel microstrip bandpass filters with transmission zeros," Progress In Electromagnetics Research, Vol. 77, 29-41, 2007.
doi:10.2528/PIER07072301

21. Xiao, J.-K. and Y. Li, "Novel microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
doi:10.1163/156939306779292156

22. Zhao, L.-P., X.-W. Chen, and C.-H. Liang, "Novel design of dual-mode dual-band bandpass filter with triangular resonators," Progress In Electromagnetics Research, Vol. 77, 417-424, 2007.
doi:10.2528/PIER07090501

23. Xiao, J.-K., S.-W. Ma, S. Zhang, and Y. Li, "Novel compact split ring stepped impedance resonators (SIR) bandpass filters with transmission zeros," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 329-339, 2007.
doi:10.1163/156939307779367369

24. Wang, Y. X., B-Z. Wang, and J. Wang, "A compact square loop dual-mode bandpass filter with wide stop-band," Progress In Electromagnetics Research, Vol. 77, 67-73, 2007.
doi:10.2528/PIER07072707

25. Xiao, J.-K., "Novel microstrip dual-mode bandpass filter using isosceles triangular patch resonator with fractal-shaped structure," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1341-1351, 2007.
doi:10.1163/156939307783239500

26. Swanson, D. G. and Jr., "Grounding microstrip lines with via holes," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 8, 1719-1721, 1992.
doi:10.1109/22.149532

27. Kinayman, N. and M. I. Aksun, Modern Microwave Circuits, Artech House, Boston, London, 2005.

28. Pak, J. S., M. Aoyagi, K. Kikuchi, and J. Kim, "Band-stop filter effect of power/ground plane on through-hole signal via in multilayer PCB," IEICE Trans. Electron, Vol. E89-C, No. 4, 551-559, 2006.
doi:10.1093/ietele/e89-c.4.551

29. Chueng, W. S. and F. H. Levien, Microwave Made Simple: Principles and Applications, Artech House Inc., Washington, 1985.

30. Agilent ADS 20005A, Momentum, Momentum, Agilent Technologies.

31. LPKF EasyContac, Operating Instructions, Operating Instructions, LPKF Laser & Electronic AG.

32. Suhner Coaxial Connectors General Catalogue, 2003/04 edition, 2003/04 edition, 123..