Search Results(13664)

0000-00-00
PIER
Vol. 45, 45-75
An Approximate Solution for Skew Incidence Diffraction by an Interior Right-Angled Anisotropic Impedance Wedge
Giuliano Manara , Paolo Nepa , Giuseppe Pelosi and Andrea Vallecchi
The scattering by an anisotropic impedance interior rightangled wedge is analyzed when the principal anisotropy directions on the two faces are parallel and perpendicular to the edge. The problem is first approached by directly applying geometrical optics (GO); this allows us to identify the conditions under which the edge diffracted contribution vanishes. For those configurations not satisfying the above conditions, a perturbative technique, based on the Sommerfeld-Maliuzhinets method, is developed to determine an approximate edge diffracted field solution, valid when the normalized surface impedances on the anisotropic faces assume small values. The perturbative corrections to the field are asymptotically evaluated in the context of the Uniform Geometrical Theory of Diffraction (UTD).
0000-00-00
PIER
Vol. 45, 21-44
A Matched Triaxial Device for Cable Shielding Measurements
S. Sali
A matched triaxial device is designed and constructed to measure the transfer impedance of braided coaxial cables at UHF frequencies. Full design principles of the device have been theoretically developed and the details were given in the paper. The device is particularly suited for accurate measurements of transfer impedances at higher radio frequencies up to 3.8 GHz, for which no comparable technique exists. The performance of the device is evaluated by comparing the results against those obtained from low frequency IEC's triple coaxial apparatus and those obtained by using well known theoretical models.
0000-00-00
PIER
Vol. 45, 1-20
Coifman Wavelets in Electromagnetic Wave Scattering by a Groove in Conducting Plane
Youri Tretiakov and George Pan
Scattering ofelectromagnetic waves from a groove in an infinite conducting plane is studied using the Coifman wavelets (Coiflets) under the integral equation formulation. The induced current is expressed in terms ofthe known Kirchhoff solution plus a localized correction current in the vicinity ofthe groove. The Galerkin procedure is implemented, employing the Coiflets as expansion and testing functions to find the correction current numerically. Owing to the vanishing moments, the Coiflets lead to a one-point quadrature formula in O(h5), which reduces the computational effort in filling the impedance matrix entries. The resulting matrix is sparse, which is desirable for iterative algorithms. Numerical results show that the new method is 2 to 5 times faster than the pulse based method of moments.
0000-00-00
PIER
Vol. 44, 309-333
Radiation Characteristics of an Axially Asymmetrical Slot Antenna on a Perfectly-Conducting Prolate Spheroid Coated with Homogeneous Materials
Ming Zhang and Abdel Sebak
The boundary value solution of electromagnetic radiation from an axis-asymmetric slot antenna on a perfectly conducting prolate spheroid coated with a confocal sheath is presented. The electromagnetic fields are expanded in terms of prolate spheroidal vector wave functions. The unknown expansion coefficients are determined from a set of linear equations derived from the application of boundary conditions on the tangential fields' components. Numerical results for radiation patterns and power are presented. It is found that the thickness of the sheath has a significant effect on the radiated fields, and the radiated power is greatly enhanced for certain values of the sheath thickness.
0000-00-00
PIER
Vol. 44, 287-308
Electromagnetic Analysis of a Non-Invasive 3D Passive Microwave Imaging System
Irene Karanasiou , Nikolaos Uzunoglu and Anastasios Garetsos
A technique based on the Green's function theory is used in the present research in order to study theoretically the focusing properties of a constructed 3D non-invasive microwave imaging system, consisting of an ellipsoidal conductive cavity and a radiometric receiver. A double layered spherical human head model is placed on one focal point of the elliptical reflector, while the receiving antenna is placed on the other focus. Making use of the reciprocity theorem, the equivalent problem of the coupling between an elementary dipole and the double layered lossy dielectric human spherical model is solved. Numerical results concerning the electric field distribution inside the head model and in the rest of the cavity, at two operating frequencies (1.5 GHz and 3.5 GHz), are presented and compared to the results of an electromagnetic simulator. Finally, phantom experimental results validate the proof of concept and determine the temperature and spatial attributes of the system.
0000-00-00
PIER
Vol. 44, 267-286
Impedance Boundary Conditions on a Chiral Film
Pierre Hillion
Using a technique borrowed from Idemen [1] and requiring the Fourier transform of the x, y-components of the electric and magnetic fields, we obtain the impedance boundary conditions for electromagnetic plane waves withh orizontal, vertical and arbitrary polarization incident on a infinite, smooth, chiral film located at z = 0 and deposited on a metallic substrate. As an application, we discuss the scattering of harmonic plane waves and of a finite beam on sucha film.
0000-00-00
PIER
Vol. 44, 249-266
The Surface Impedance of a Homogeneous TM-Type Plane Wave at Skew Incidence Upon an Inclined Anisotropic Half-Space
Glenn Wilson and David V. Thiel
General expressions for the electromagnetic fields of homogeneous TM-type plane waves at a skew angle of incidence upon an inclined anisotropic half-space are derived. Previous analyses have only considered fields of homogeneous plane waves in the problems of a laterally anisotropic half-space, and not the problem of an inclined anisotropic half-space. Previous analyses also have assumed that the linear polarization of the incident magnetic field is maintained, regardless of the anisotropy present. The results presented in this paper have shown that while this assumption is valid only for the magnetic field, the electric field is elliptically polarised in the anisotropic half-space. This is demonstrated through a model study and experimental verification at VLF. The solutions obtained converge on the expected values for the special cases presented by other authors.
0000-00-00
PIER
Vol. 44, 231-248
Wide-Angle Radar Target Recognition with Subclass Concept
Dong-Kyu Seo , Kyung-Tae Kim , In-Sik Choi and Hyo-Tae Kim
The range profile is an easily obtainable and promising feature vector for a real-time radar target recognition system. However, the range profile is highly dependent on the aspect angle of a target. This dependency makes the recognition over a wide angular region difficult. In this paper, we propose a classifier with a subclass concept in order to solve this dependency problem. Recognition results with six aircraft models measured at a compact range facility are presented to show the effectiveness of the proposed classifier over a wide-angular region.
0000-00-00
PIER
Vol. 44, 131-142
Numerical Analysis of Two Dimensional Tapered Dielectric Waveguide
Asok De and Girish Attimarad
A simple method is presented to obtain the scattering parameters of the two dimensional tapered dielectric waveguide, by discrete approximation to tapering, consisting of series of steps. The two dimensional step discontinuity of the junction of two different dielectric rectangular waveguides has been solved using integral equation arising from the field matching of the discrete modes and the continuous spectrum. Accurate numerical solution has been obtained using Ritz-Galerkin variational approach with appropriate sets of expanding functions. The results in the form of scattering parameters for varying tapered length have been depicted graphically. Computed results from generalized integral expressions are found to be in excellent agreement with results obtained in two-dimensional case. With this method it is possible to design the structure to enlarge the cross section of a mode in a slow and controlled manner.
0000-00-00
PIER
Vol. 42, 173-192
Wave Propagation in a Curved Waveguide with Arbitrary Dielectric Transverse Profiles
Zion Menachem
A rigorous approach is derived for the analysis of electromagnetic (EM) wave propagation in dielectric waveguides with arbitrary profiles, situated inside rectangular metal tubes, and along a curved dielectric waveguide. The first objective is to develop a mode model in order to provide a numerical tool for the calculation of the output fields for radius of curvature 0.1 m ≤ R ≤ ∞. Therefore we take into account all the terms in the calculations, without neglecting the terms of the bending. Another objective is to demonstrate the ability of the model to solve practical problems with inhomogeneous dielectric profiles. The method is based on Fourier coefficients of the transverse dielectric profile and those of the input wave profile. These improvements contribute to the application of the model for inhomogeneous dielectric profiles with single or multiple maxima in the transverse plane. This model is useful for the analysis of dielectric waveguides in the microwave and the millimeter-wave regimes, for diffused optical waveguides in integrated optics, and for IR regimes.
0000-00-00
PIER
Vol. 41, 1-20
An Introduction to Photonic Band Gap (PBG) Materials
Geraldine Guida , Andre De Lustrac and Alain C. Priou
This paper introduces photonic band gap (PBG) materials that are periodic dielectric or metallo-dielectric materials conceived to control the propagation of electromagnetic waves. Firstly, the principle of these materials is explained. Doped PBG materials are then presented with their main properties and applications. New phenomena like super-prism or super-lens are also introduced. A review of different numerical methods used to study photonic band gap materials and to analyze their properties is given next. Manufacturing processes are then briefly described and foreseen applications are presented. Finally, the new field of the controllable photonic band gap materials is introduced.
0000-00-00
PIER
Vol. 40, 315-333
Scattering by a Gyrotropic Bianisotropic Cylinder of Arbitrary Cross Section: an Analysis Using Generalized Multipole Technique
Tat Yeo and Mook-Seng Leong
The electromagnetic scattering by a homogeneous gyrotropic bianisotropic cylinder of arbitrary cross section is analyzed in this paper using the generalized multipole technique (GMT) where only the longitudinal fictitious electric and magnetic currents are involved. The general scattering solution is formulated and numerical results of near fields and bistatic radar cross sections are presented for four specific examples, namely, a chiral circular cylinder, a chiral square cylinder, a gyrotropic bianisotropic circular cylinder, and a gyrotropic bianisotropic "lens" cylinder. Results obtained using the GMT for the chiral and the gyrotropic bianisotropic circular cylinders are in excellent agreement with those obtained from the eigen-function expansion. Results of the GMT for the chiral square cylinder are in excellent agreement with those obtained from the method of moments (MoM) solution.
0000-00-00
PIER
Vol. 40, 295-314
A Practical Approach to Modeling Doubly Curved Conformal Microstrip Antennas
Charles Macon , Keith D. Trott and Leo C. Kempel
Designers are increasingly integrating conformal microstrip antennas into the curved structures of either air or land vehicles. Quite often, these structures are doubly curved (e.g. curved along two orthogonal surface directions). This practice necessitates the development of accurate codes versatile enough to model conformal antennas with arbitrarily shaped apertures radiating from doubly curved surfaces. Traditional planar-structure-based design techniques are not well suited for this application. A hybrid finite element-boundary integral formulation appropriate for the high-frequency analysis and design of doubly curved conformal antennas is introduced in this paper. The novelty of this approach lies in its use of an asymptotic prolate spheroidal dyadic Green's function to model the physics of curved surface diffraction. To demonstrate the utility of this approach, the effects of curvature on the resonant frequency and input impedance of both a doubly curved conformal square and circular patch antenna are investigated. Different feed positions are also considered. Due to a paucity of published experimental data, the numerical results are benchmarked by comparison with the results for planar square and circular patch antennas. The planar results are obtained by using an experimentally validated planar finite element-boundary integral code.
0000-00-00
PIER
Vol. 40, 255-269
A Note on the Backward Scattering Theorem
Jan Grzesik
Recent efforts by C.-T. Tai to emphasize backward scattering within the makeup of the optical theorem are examined here from first principles. The present work exploits spectral field representations and a common asymptotic procedure so as to build up both the scattered fields and their contribution to the extinction integral. The result of all this is to reaffirm the strictly forward scattering nature of the optical theorem as commonly understood, while at the same time reconciling it with a backward scattering interpretation. The backward scattering, it so turns out, is backward in reciprocal space, wherein it affects the Fourier transform of the currents induced throughout the scattering object. The standard forward scattering attribute of the optical theorem, forward in the context of actual space, remains unimpaired. In truth, however, the backward spectral attribute is a mere technical formality, made available for only one of the two signature options which one can exercise when making specific the details of transformation. The alternate signature option leads to a forward appearance in spectral space also, with the actual value of the current transform appearing in the optical theorem quite intact. We develop these results in detail and then, for completeness, summarize the special form which they adopt for scattering obstacles with axial symmetry.
0000-00-00
PIER
Vol. 40, 229-254
Radio Wave Propagation in Perpendicular Streets of Urban Street Grid for Microcellular Communications. Part I: Channel Modeling
Hassan El-Sallabi and Pertti Vainikainen
This paper proposes a spatial variant wideband propagation model for perpendicular street of urban street grid. Analytical expression of the spatial variant multi-ray channel transfer function is derived. The model provides characteristics of each ray in explicit expressions. The ray characteristics are given in terms of complex amplitude for both vertical and horizontal polarizations, path length, angle of arrival and departure. A set membership criteria is proposed to determine the coupling radio paths. The proposed model is not only capable in providing macroscopic quantities like mean field values and mean delay spread, but also the full wideband channel information, i.e., space dependent complex channel responses with a high time dispersion resolution. The proposed model can be used for studying different propagation problems in urban street grid for microcellular communications with applications e.g., antenna diversity techniques, multi-input multi-output (MIMO) channel capacity analysis, etc.
0000-00-00
PIER
Vol. 40, 207-227
Electromagnetic Scattering from a Circular Target Above or Below Rough Surface
Chao-Fu Wang and Yeow-Beng Gan
The electromagnetic scattering from a perfectly electric conducting (PEC) target located above or below rough surface is investigated, for the case of TM polarization, using the Method of Moments (MoM). The rough surface with Gaussian profile is used to emulate the realistic situation of a statistically-rough surface, while the tapered incident wave is chosen to reduce the truncation error. The Monte-Carlo procedure is employed to calculate the angular correlation function (ACF), which is dependent on the depth, size and horizontal position of the buried target, as well as the moisture content in the soil, and the properties of the rough surface. The enhancement of the ACF on the non-memory line can be used to detect a target below the rough surface. The analysis on the statistical characteristics is also carried out, in view of the study on target detection.
0000-00-00
PIER
Vol. 40, 177-205
Potential of Reflected GNSS Signals for Ice Sheet Remote Sensing
Martin Wiehl and B. Legresy
Earth-reflected GNSS (Global Navigation Satellite System) signals have become an attractive tool for remote sensing, e.g., ocean altimetry and scatterometric ocean wind measurements. For ice sheets, the large penetration capability and the large-scale surface averaging of the L-band signals could open a new look on firnpack characteristics like accumulation rates. In this paper we investigate theoretically reflections of GPS (Global Positioning System) signals from ice sheets. We derive a model of the reflection signal and perform simulations of airborne and spaceborne measurements. The results show that the signal, though complex, is sensitive to the roughness of the snow surface (and internal interfaces) and to firn parameters like accumulation rates. To extract valuable and concise information from the complex signal, we derive an example procedure that focusses on particular ground zones during a satellite receiver pass. The results indicate that it should be possible in principle to separately infer surface and firnpack parameters from the measurements. We conclude that GNSS reflections over ice sheets should be further persued, in particular by obtaining experimental data.
0000-00-00
PIER
Vol. 40, 155-176
Mode Transfigurations in Chirowaveguides
Anatoly Poyedinchuk
It has been analyzed physical features of the modes behavior in a waveguide filled with the chiral medium. Both mathematical and physical models of their propagation have been defined and modes classification has been suggested. It has been shown that the same root feature in dispersion is typical both for chirowaveguide modes and for the unchiral waveguide; however the mode transfiguration is peculiar to all chirowaveguide modes and this determines the complex character of the final dispersion curves behavior. The following features are typical for chirowaveguide modes: connections between polarizations and between wave types, intersections of the dispersion curves, the spatial beatings and consecutive changes of the eigen function while moving the operating point along the dispersion curve (the mode transfiguration). The chirowaveguide performs polarization selection of propagating waves in such a way that only right-polarized waves can exist under big values of propagation constant in the chirowaveguide; the mode transfiguration is the reason of this.
0000-00-00
PIER
Vol. 40, 131-153
Radio Propagation in Rural Residential Areas with Vegetation
Nathan Blaunstein , Dan Censor and Dimitry Katz
In this paper we describe radio wave propagation within mixed residential area consisting of vegetation and houses. We assume no specific knowledge of the houses and vegetation location,but only of their statistical parameters. A three-dimensional (3D) stochastic approach,whic h is based on the statistical description of the terrain features,houses and vegetation,and deterministic description of signal decay is presented. The scattering and diffraction from trees and buildings,as well as the diffused reflection from the rough structures of the obstructions are modeled using the statistical description of an array of non-transparent phase screens randomly distributed on the rough terrain. The model,whic h accounts for single scattering and diffraction phenomena and a similar model,whic h accounts for multiple scattering effects without effects of diffraction are compared with measurements carried out in typical rural mixed residential areas with vegetation. The accuracy of the theoretical prediction is analyzed accounting possible variations of the terrain features. The approach presented here is applicable in many cases,where specific topographical information is not available.
0000-00-00
PIER
Vol. 40, 113-129
Electromagnetic Scattering from a Dielectric Cylinder with Multiple Eccentric Cylindrical Inclusions
Hiroshi Toyama and Kiyotoshi Yasumoto
A simple and direct method to the problem of twodimensional electromagnetic scattering from a dielectric cylinder with multiple eccentric cylindrical inclusions is proposed. The method is based on the T-matrix approach. An aggregate T-matrix of the external cylinder for TM-wave and TE-wave excitations is derived in terms of the T-matrices of individual cylinders isolated in the host medium. The backscattering and differential scattering crosssections of the host cylinder are easily obtained by matrix calculations for the aggregate T-matrix. Numerical investigation is presented for the case where all cylinders have circular cross-sections. Numerical examples for up to three inclusions demonstrate that the scattering characteristics are significantly influenced by the internal asymmetry and inhomogeneity pertinent to the locations and material of the inclusions.