Vol. 44
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Electromagnetic Analysis of a Non-Invasive 3D Passive Microwave Imaging System
By
, Vol. 44, 287-308, 2004
Abstract
A technique based on the Green's function theory is used in the present research in order to study theoretically the focusing properties of a constructed 3D non-invasive microwave imaging system, consisting of an ellipsoidal conductive cavity and a radiometric receiver. A double layered spherical human head model is placed on one focal point of the elliptical reflector, while the receiving antenna is placed on the other focus. Making use of the reciprocity theorem, the equivalent problem of the coupling between an elementary dipole and the double layered lossy dielectric human spherical model is solved. Numerical results concerning the electric field distribution inside the head model and in the rest of the cavity, at two operating frequencies (1.5 GHz and 3.5 GHz), are presented and compared to the results of an electromagnetic simulator. Finally, phantom experimental results validate the proof of concept and determine the temperature and spatial attributes of the system.
Citation
Irene Karanasiou Nikolaos Uzunoglu Anastasios Garetsos , "Electromagnetic Analysis of a Non-Invasive 3D Passive Microwave Imaging System," , Vol. 44, 287-308, 2004.
doi:10.2528/PIER03080801
http://www.jpier.org/PIER/pier.php?paper=0308081
References

1. Hand, J. W., G. M. J. Van Leeuwen, S. Mizushina, J. B. Van de Kamer, K. Maruyama, T. Suiura, D. V. Azzopardi, and A. D. Edwards, "Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modeling," Physics in Medicine and Biology, Vol. 46, No. 6, 1885-1903, 2001.
doi:10.1088/0031-9155/46/7/311

2. Maruyama, K., S. Mizushina, T. Sugiura, G. M. J. Van Leeuwen, J. W. Hand, G. Marrocco, F. Bardati, A. D. Edwards, D. Azzopardi, and D. Land, "Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 2141-2147, 2000.
doi:10.1109/22.884206

3. Van Leeuwen, G. M. J., et al., "New temperature retrieval algorithm for brain temperature monitoring using microwave brightness temperatures," Electronic Letters, Vol. 36, No. 6, 341-342, 2001.
doi:10.1049/el:20010269

4. Paglione, R., "Portable diagnostic radiometer," RCA Review, Vol. 47, 635-643, 1986.

5. Abdul-Razak, M., B. A. Hardwick, G. L. Hey-Shipton, P. A. Matthews, J. R. Monson, and R. C. Kester, Microwave thermography for medical applications, IEE Proceedings, Vol. 134, 171-174, 1987.

6. Dubois, L., J. P. Sozanski, V. Tessier, J. Camart, J. J. Favre, J. Pribetich, and M. Chive, "Temperature control and thermal dosimetry by microwave radiometry in hyperthermia," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 1755-1761, 1996.
doi:10.1109/22.539932

7. Edrich, J. and P. C. Hardee, Thermography at millimeter wavelength, Proceedings IEEE, Vol. 62, 1391-1392, 1974.

8. Michaelson, S. M., Human exposure to nonionizing radiant energy — Potential hazards and safety standards, Proceedings IEEE, Vol. 60, No. 4, 389-921, 1972.

9. Planck, M., Eight Lectures on Theoretical Physics, Dover Pub. Inc., 1998.

10. Cottis, P. G. and N. K Uzunoglu, "Focusing properties of dipole arrays placed near a multilayer lossy sphere," J. Electromag. Waves Applicat., Vol. 4, 431-440, 1990.

11. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.

12. Nikita, K. S., G. S. Stamatakos, N. K. Uzunoglu, and A. Karafotias, "Analysis of the interaction between a layered spherical human head model and a finite-length dipole," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 2003-2013, 2000.
doi:10.1109/22.884189

13. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics and Medicine and Biology., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

14. Stuchly, M. A. and S. S. Stuchly, "Dielectric properties of biological substances—Tabulated," J. Microwave Power, Vol. 15, 19-26, 1980.

15. Drossos, A., V. Santomaa, and N. Kuster, "The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range o f300-3000 MHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1988-1995, 2000.
doi:10.1109/22.884187

16. www.ansoft.com,.

17. Heath, Sir Thomas, "Conic Sections," A History of Greek Mathematics, 1981.

18. Cottis, P. G., N. K. Uzunoglu, and P. S. Papakonstantinou, "Measurement of three-dimensional temperature distribution inside dielectric objects using near-field radiometry," Journal of Electromagnetic Waves and Applications, Vol. 2, 621-633, 1988.