1. Dersch, U. and E. Zollinger, "Propagation mechanisms in microcell and indoor environment," IEEE Trans. Antennas and Propagat., Vol. 43, 1058-1066, Nov. 1994. Google Scholar
2. Erceg, V., A. J. Rustako, and R. S. Roman, "Diffraction around corners and its effect on the microcell coverage area in urban and suburban environments at 900 MHz, 2 GHz, and 6 GHz," IEEE Trans. Veh. Technol., Vol. 43, 762-766, Aug. 1994.
doi:10.1109/25.312770 Google Scholar
3. Kouyoumjian, R. G. and P. H. Pathk, "A uniform geometrical theory of diffraction for and edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651 Google Scholar
4. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, Boston, London, 1996.
5. Luebbers, R. J., "Finite conductivity uniform UTD versus knife diffraction prediction of propagation path loss," IEEE Trans. Antennas Propagat., Vol. 32, 70-76, Jan. 1984.
doi:10.1109/TAP.1984.1143189 Google Scholar
6. Liang, G. and H. Bertoni, "A new approach to 3-D ray tracing for propagation prediction in cities," IEEE Trans. Antennas Propagat., Vol. 46, No. 6, 853-863, Jun. 1998.
doi:10.1109/8.686774 Google Scholar
7. Kanatas, A. G., I. D. Kounouris, G. B. Kostaras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, 185-193, Jan. 1997.
doi:10.1109/25.554751 Google Scholar
8. Tan, S. Y. and H. S. Tan, "A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory," IEEE Trans. Antennas and Propagat., Vol. 44, 1317-1326, Oct. 1996. Google Scholar
9. Liang, G. and H. L. Bertoni, "Review of ray modeling techniques for site specific propagation prediction," Wireless Communications, TDMA Versus CDMA, S. G. Glisic and P. A. Leppanen (eds.), 323-343, Kluwer Academic, Norwell, MA, 1997. Google Scholar
10. Athanasiadou, G. E., A. R. Nix, and J. P. McGeehan, "A microcellular ray tracing model and evaluation of its Narrow-band and wide-band predictions," IEEE J. Select. Areas Commun., Vol. 18, No. 3, 322-355, March 2000.
doi:10.1109/49.840192 Google Scholar
11. Son, H.-W. and N.-H. Myung, "A deterministic ray tube method for microcellular wave propagation prediction model," IEEE Trans. Antennas and Propagat., Vol. 47, 1344-1350, Aug. 1999.
doi:10.1109/8.791954 Google Scholar
12. Agelet, F. A., A. Formella, J. M. Hernando, F. I. de Vicente, and F. P. Fontan, "Efficient Ray-tracing acceleration techniques for radio propagation modeling," IEEE Trans. Veh. Technol., Vol. 49, 2089-2094, Nov. 2000. Google Scholar
13. Rizk, K., J.-F. Wagen, and F. Gardiol, "Two-dimensional raytracing modeling for propagation in microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, 508-518, Feb. 1997.
doi:10.1109/25.580789 Google Scholar
14. El-Sallabi, H. and P. Vainiakainen, "Physical modeling of lineof- sight wideband propagation in a city street for microcellular communications," Journal of Electromagnetic Waves and Applications, Vol. 14, 904-927, 2000. Google Scholar
15. Foschini, G. J. and M. Gans, "On the limits of wireless communications in fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, 311, March 1998.
doi:10.1023/A:1008889222784 Google Scholar
16. Chizhik, D., G. Foschini, M. Gans, and R. Valenzuela, "Keyholes, correlations and capacities of multi-element transmit and receive arrays," Electronic letters, Vol. 36, June 22, 2000. Google Scholar
17. Tsoulos, G. V. and G. E. Athanasiadou, "On the application of adaptive antennas to microcellular environments: radio channel characteristics and system performance," IEEE Trans. Veh. Technol., Vol. 51, 1-16, Jan. 2002.
doi:10.1109/25.992063 Google Scholar
18. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, NJ, 1973.
19. Maliuzhinets, G. D., "Excitation, reflection and emission of surface waves from a wedge with given face impedances," Sov. Phys. Dokl., Vol. 3, No. 4, 752-755, 1958. Google Scholar
20. Tiberio, R., G. Pelosi, G. Manara, and P. H. Pathak, "High-frequency scattering from a wedge with impedance faces illuminated by a line source — Part I: Diffraction," IEEE Trans. Antennas Propagat., Vol. 37, 212-218, Feb. 1989.
doi:10.1109/8.18708 Google Scholar
21. Holm, P. D., "A new heuristic UTD diffraction coefficient for nonperfectly conducting wedges," IEEE Trans. Antennas Propagat., Vol. 48, 1211-1219, Aug. 2000.
doi:10.1109/8.884489 Google Scholar
22. El-Sallabi, H., I. T. Rekanos, and P. Vainiakainen, "A new heuristic diffraction coefficient for lossy dielectric wedges at normal incidence," IEEE Antennas and Propagation Letters (AWPL), Vol. 1, 165-168, 2002.
doi:10.1109/LAWP.2002.807566 Google Scholar
23. El-Sallabi, H. M., G. Liang, H. L. Bertoni, and P. Vainikainen, "Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcell," IEEE Trans. on Antenna and Propag., Vol. 50, No. 5, 703-712, May 2002.
doi:10.1109/TAP.2002.1011238 Google Scholar