Vol. 40
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
A Note on the Backward Scattering Theorem
By
, Vol. 40, 255-269, 2003
Abstract
Recent efforts by C.-T. Tai to emphasize backward scattering within the makeup of the optical theorem are examined here from first principles. The present work exploits spectral field representations and a common asymptotic procedure so as to build up both the scattered fields and their contribution to the extinction integral. The result of all this is to reaffirm the strictly forward scattering nature of the optical theorem as commonly understood, while at the same time reconciling it with a backward scattering interpretation. The backward scattering, it so turns out, is backward in reciprocal space, wherein it affects the Fourier transform of the currents induced throughout the scattering object. The standard forward scattering attribute of the optical theorem, forward in the context of actual space, remains unimpaired. In truth, however, the backward spectral attribute is a mere technical formality, made available for only one of the two signature options which one can exercise when making specific the details of transformation. The alternate signature option leads to a forward appearance in spectral space also, with the actual value of the current transform appearing in the optical theorem quite intact. We develop these results in detail and then, for completeness, summarize the special form which they adopt for scattering obstacles with axial symmetry.
Citation
Jan Grzesik , "A Note on the Backward Scattering Theorem," , Vol. 40, 255-269, 2003.
doi:10.2528/PIER02120601
http://www.jpier.org/PIER/pier.php?paper=0212061
References

1. Tai, C.-T., "Backward scattering theorem applying to a perfectly conducting sphere," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 5, 597-609, 2002.
doi:10.1163/156939302X01056

2. Sugai, I. and J. Grzesik, "Further comment on the singularities of the tensor Green’s function," Proceedings of the IEEE, Vol. 55, No. 9, 1624-1626, 1967.
doi:10.1109/PROC.1967.5922

3. Born, M. and E. Wolf, Principles of Optics, Sixth (Corrected) Edition, Cambridge University Press, Cambridge, 1997.

4. Carrier, G. F., M. Krook, and C. E. Pearson, Functions of a Complex Variable, Theory and Technique, McGraw-Hill Book Company, Inc., New York, 1966.

5. Copson, E. T., An Introduction to the Theory of Functions of a Complex Variable, Oxford University Press, London, 1960.

6. Levine, H. and J. Schwinger, "On the radiation of sound from an unflanged circular pipe," The Physical Review, Vol. 73, No. 4, 383-406, 1948.
doi:10.1103/PhysRev.73.383

7. Dirac, P. A. M., The Principles of Quantum Mechanics, Fourth Edition (Revised), Oxford University Press, London, 1967.

8. Landau, L. and E. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, Vol. 3 of Course of Theoretical Physics, Second Edition, Revised and Enlarged, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1965.

9. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, 1941.

10. Newton, R. G., Scattering Theory of Waves and Particles, McGraw-Hill Book, Company, Inc., New York, 1966.

11. Panofsky, W. and M. Phillips, "Classical Electricity and Magnetism," Second Edition, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1962.

12. Jackson, J. D., Classical Electrodynamics, Third Edition, John Wiley & Sons, Inc., New York, 1999.

13. Schwinger, J., L. L. DeRaad, Jr., K. A. Milton, and W.- Y. Tsai, Classical Electrodynamics, Perseus Books, Reading, Massachusetts, 1998.

14. Schiff, L. I., Quantum Mechanics, Second Edition, McGraw-Hill Book Company, Inc., New York, 1955.

15. Saxon, D. S., Elementary Quantum Mechanics, Holden-Day, San Francisco, 1968.

16. Schwinger, J., Quantum Mechanics, Symbolism of Atomic Measurements, B.-G. Englert (ed.), Springer-Verlag, Berlin, 2001.

17. Grzesik, J., "Field matching through volume suppression," IEE Proceedings, Vol. 127, Part H (Antennas and Optics), No. 1, 20–26, 1980.

18. Lee, S.-C. and J. A. Grzesik, "Light scattering by closely spaced parallel cylinders embedded in a semi-infinite dielectric medium," Journal of the Optical Society of America, Series A, Vol. 15, No. 1, 163–173, 1998.