1. Kildal, P. S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. Antennas and Propagat., Vol. 44, No. 11, 1509-1520, 1996.
doi:10.1109/8.542076
2. Michelson, D. G. and E. V. Jull, "Depolarizing trihedral corner reflectors for radar navigation and remote sensing," IEEE Trans. Antennas Propagat., Vol. 43, No. 5, 513-518, 1995.
doi:10.1109/8.384196
3. Gennarelli, C., G. Pelosi, and G. Riccio, Physical optics analysis of the field backscattered by a depolarizing trihedral corner reflector, IEE Proc.—Microwave, Vol. 145, No. 6, 213-218, 1998.
4. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Press, Stevenage, U.K., 1995.
5. Manara, G., P. Nepa, and G. Pelosi, "High-frequency EM scattering by edges in artificially hard and soft surfaces illuminated at oblique incidence," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 790-800, 2000.
doi:10.1109/8.855499
6. Bilow, H. J., "Scattering by an infinite wedge with tensor impedance boundary conditions—a moment method/physical optics solution for the currents," IEEE Trans. Antennas Propagat., Vol. 39, No. 6, 767-773, 1991.
doi:10.1109/8.86874
7. Maliuzhinets, G. D., "Developments in our concepts of diffraction phenomena," Sov. Phys.: Usp., Vol. 69(2), No. 5, 749-758, 1959.
doi:10.1070/PU1959v002n05ABEH003170
8. Popov, A. V., "Numerical solution of the wedge diffraction problem by the transverse diffusion," Sov. Phys. Acoust., Vol. 15, No. 2, 226-233, 1969.
9. Pelosi, G., S. Selleri, and R. D. Graglia, "The parabolic equation model for the numerical analysis of the diffraction at an impedance wedge: skew incidence case," IEEE Trans. Antennas Propagat., Vol. 44, 267-268, 1996.
doi:10.1109/8.481657
10. Zhu, N. Y. and F. M. Landstofer, "Numerical study of diffraction and slope-diffraction at anisotropic impedance wedges by the method of parabolic equation: space wave," IEEE Trans. Antennas Propagat., Vol. 45, 822-828, 1997.
doi:10.1109/8.575629
11. Nefedov, Y. I. and A. T. Fialkovskiy, "Diffraction of plane electromagnetic wave at anisotropic half-plane in free space and in planar waveguide," Radio Eng. Electron. Physics, Vol. 17, No. 6, 887-896, 1972.
12. Lyalinov, M. A., "Diffraction by a wedge with anisotropic face impedances," Ann. Telecommun., Vol. 49, No. 12, 667-672, 1994.
13. Pelosi, G., G. Manara, and P. Nepa, "Diffraction by a wedge with variable-impedance walls," IEEE Trans. Antennas Propagat., Vol. 44, No. 10, 1334-1340, 1996.
doi:10.1109/8.537327
14. ——, "A UTD solution for the scattering by a wedge with anisotropic impedance faces: skew incidence cases," IEEE Trans. Antennas Propagat., Vol. 46, No. 4, 579-588, 1998.
doi:10.1109/8.664124
15. Senior, T. B. A., "Skew incidence on a right-angled wedge," Radio Sci., Vol. 13, No. 4, 639-647, 1978.
16. Dybdal, R., L. Peters, Jr., and W. Peake, "Rectangular waveguides with impedances walls," IEEE Trans. Microwave Theory Tech., Vol. 19, 2-9, 1971.
doi:10.1109/TMTT.1971.1127438
17. Maliuzhinets, G. D., "Excitation, reflection and emission of surface waves from a wedge with given face impedances," Sov. Phys. Dokl., Vol. 3, 752-755, 1958.
18. Kouyoumjian, R. G. and P. H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
19. Maliuzhinets, G. D., "Inversion formula for the Sommerfeld integral," Sov. Phys. Dokl., Vol. 3, 52-56, 1958.
20. Bowman, J. J. and T. B. A. Senior, "The wedges," Electromagnetic and Acoustic Scattering by Simple Shapes, 252-283, 1969.
21. Maliuzhinets, G. D., "The radiation of sound by the vibrating boundaries of an arbitrary wedge. Part I," Sov. Phys. Acoust., Vol. 1, 152-174, 1955.
22. Tuzhilin, A. A., "The theory of Maliuzhinets inhomogeneous functional equations," Differ. Urav., Vol. 9, 2058-2064, 1973.
23. Maliuzhinets, G. D., "Radiation of sound from the vibrating faces of an arbitrary wedge. Part II," Sov. Phys. Acoust., Vol. 1, 240-248, 1955.