1. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 105-109, 1978.
doi:10.1016/0021-9797(78)90189-3 Google Scholar
2. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, 458-462, 1974.
doi:10.1016/0009-2614(74)85144-4 Google Scholar
3. Uslenghi, P. L. E., "Scattering by an impedance sphere coated with chiral layer," Electromagn., Vol. 10, 201-211, 1990.
doi:10.1080/02726349008908236 Google Scholar
4. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, 91-96, Jan. 1991.
doi:10.1109/8.64441 Google Scholar
5. Kluskens, M. S. and E. H. Newman, "Scattering by a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 38, 1448-1455, Sept. 1990.
doi:10.1109/8.56998 Google Scholar
6. Al-Kanhal, M. A. and E. Arvas, "Electromagnetic scattering from a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 44, 1041-1048, July 1996.
doi:10.1109/8.504313 Google Scholar
7. Zhang, M. and W. X. Zhang, "Scattering of electromagnetic waves from a chiral cylinder of arbitrary cross section — GMT approach," Microwave & Opt. Technol. Lett., Vol. 10, No. 1, 22-25, 1995.
doi:10.1002/mop.4650100109 Google Scholar
8. Monzon, J. C., "Scattering by a biisotropic body," IEEE Trans. Antennas Propagat., Vol. 43, 1288-1296, Nov. 1995. Google Scholar
9. Olyslager, F., "Time-harmonic two- and three-dimensional closedform Green’s dyadics for gyrotropic, bianisotropic and anisotropic media," Electromagn., Vol. 17, No. 4, 369-386, 1997.
doi:10.1080/02726349708908546 Google Scholar
10. Zhang, M. and W. Hong, "Electromagnetic scattering by a bianisotropic cylinder," Proc. IEEE Antennas Propagat. Soc. Int. Symp., 910-913, Montreal Canada, July 1997. Google Scholar
11. Cheng, D. J., "Vector-wave-function theory of uniaxial bianisotropic semiconductor material," Phys. Rev. E, Vol. 56, No. 2, 2321-2324, 1997.
doi:10.1103/PhysRevE.56.2321 Google Scholar
12. Yin, W. Y. and L. W. Li, "Multiple scattering from gyrotropic bianisotropic cylinders of arbitrary cross sections using the modeling technique," Phys. Rev. E, Vol. 60, No. 1, 918-925, 1999.
doi:10.1103/PhysRevE.60.918 Google Scholar
13. Shanker, B., S. K. Han, and E. Michielssen, "A fast multipole approach to analyze scattering from an inhomogeneous bianisotropic object embedded in a chiral host," Radio Sci., Vol. 33, No. 1, 17-31, 1998.
doi:10.1029/97RS02469 Google Scholar
14. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech House, Inc., 1991.
15. Leviatan, Y., P. G. Li, A. T. Adams, and J. Perini, "Singlepost inductive obstacle in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 31, 806-811, Oct. 1983. Google Scholar
16. Leviatan, Y. and A. Boag, "Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model," IEEE Trans. Antennas Propagat., Vol. 35, 1119-1127, Oct. 1987. Google Scholar
17. Leviatan, Y., Am. Boag, and Al. Boag, "Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies — theory and numerical solution," IEEE Trans. Antennas Propagat., Vol. 36, 1722-1734, Dec. 1988.
doi:10.1109/8.14394 Google Scholar
18. Cheng, C. H., "GMT/SDT for underground EM scattering,", Ph.D. dissertation, Southeast University, China, 1993 (In Chinese). Google Scholar
19. Na, H. G. and H. T. Kim, "Scattering analysis of conducting bodies of revolution using fictitious currents and point-matching," IEEE Trans. Antennas Propagat., Vol. 43, 426-430, Apr. 1995. Google Scholar
20. Zhang, M. and Y. Shu, "Generalized multipole technique for electromagnetic scattering by arbitrarily shaped two-dimensional objects," Microwave & Opt. Technol. Lett., Vol. 10, No. 6, 363-365, 1995.
doi:10.1002/mop.4650100617 Google Scholar
21. Na, H. G. and H. T. Kim, "Convergence of the fictitious current model," IEE. Proc. — H, Vol. 143, No. 2, 163-168, 1996. Google Scholar
22. Kang, T. W. and H. T. Kim, "Basis function considerations for the methods of moments using the fictitious current model," IEEE Trans. Antennas Propagat., Vol. 47, No. 6, 1118-1120, June 1999.
doi:10.1109/8.777140 Google Scholar
23. Beker, B., K. R. Umashankar, and A. Taflove, "Numerical analysis and validation of the combined field surface integral equations for electromagnetic scattering by arbitrary shaped two-dimensional anisotropic objects," IEEE Trans. Antennas Propagat., Vol. 37, No. 12, 1573-1581, Dec. 1989.
doi:10.1109/8.45100 Google Scholar