Vol. 42
Latest Volume
All Volumes
PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Wave Propagation in a Curved Waveguide with Arbitrary Dielectric Transverse Profiles
By
Progress In Electromagnetics Research, Vol. 42, 173-192, 2003
Abstract
A rigorous approach is derived for the analysis of electromagnetic (EM) wave propagation in dielectric waveguides with arbitrary profiles, situated inside rectangular metal tubes, and along a curved dielectric waveguide. The first objective is to develop a mode model in order to provide a numerical tool for the calculation of the output fields for radius of curvature 0.1 m ≤ R ≤ ∞. Therefore we take into account all the terms in the calculations, without neglecting the terms of the bending. Another objective is to demonstrate the ability of the model to solve practical problems with inhomogeneous dielectric profiles. The method is based on Fourier coefficients of the transverse dielectric profile and those of the input wave profile. These improvements contribute to the application of the model for inhomogeneous dielectric profiles with single or multiple maxima in the transverse plane. This model is useful for the analysis of dielectric waveguides in the microwave and the millimeter-wave regimes, for diffused optical waveguides in integrated optics, and for IR regimes.
Citation
Zion Menachem, "Wave Propagation in a Curved Waveguide with Arbitrary Dielectric Transverse Profiles," Progress In Electromagnetics Research, Vol. 42, 173-192, 2003.
doi:10.2528/PIER03012303
References

1. Riess, K., "Electromagnetic waves in a bent pipe of rectangular cross-section," Q. Appl. Math., Vol. 1, 328-333, 1944.

2. Rice, S. O., "Reflections from circular bends in a rectangular wave guides-matrix theory," Bell Syst. Tech. J., Vol. 27, 305-349, 1948.

3. Heiblum, M. and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron., Vol. 12, 75-83, 1976.

4. Kawakami, S., M. Miyagi, and S. Nishida, "Bending losses of dielectric slab optical waveguide with double or multiple claddings," Appl. Optics, Vol. 15, 2588-2597, 1976.

5. Chang, D. C. and F. S. Barnes, "Reduction of radiation loss in a curved dielectric slab waveguide," Sci.Rept.2AFOSR-72-2417, 72-2417, 1973.

6. Marcatily, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., Vol. 43, 1783-1809, 1964.

7. Cochran, J. A. and R. G. Pecina, "Mode propagation in continuously curved waveguides," Radio Science, Vol. 1 (new series), No. 6, 679-696, 1966.

8. Carle, P. L., "New accurate and simple equivalent circuit for circular E-plane bends in rectangular waveguide," Electronics Letters, Vol. 23, No. 10, 531-532, 1987.

9. Weisshaar, A., S. M. Goodnick, and V. K. Tripathi, "A rigorous and efficient method of moments solution for curved waveguide bends," IEEE Trans. Microwave Theory Tech., Vol. MTT-40, No. 12, 2200-2206, 1992.
doi:10.1109/22.179881

10. Cornet, P., R. Duss'eaux, and J. Chandezon, "Wave propagation in curved waveguides of rectangular cross section," IEEE Trans. Microwave Theory Tech., Vol. MTT-47, 965-972, 1999.
doi:10.1109/22.775427

11. Lewin, L., D. C. Chang, and E. F. Kuester, Electromagnetic Waves andCurve dStructur es, 95-113, Chap. 8, 1977.

12. Menachem, Z. and E. Jerby, "Transfer matrix function (TMF) for wave propagation in dielectric waveguides with arbitrary transverse profiles," IEEE Trans. Microwave Theory Tech., Vol. MTT-46, 975-982, 1998.
doi:10.1109/22.701451

13. Menachem, Z., N. Croitoru, and J. Aboudi, "Improved mode model for IR wave propagation in a toroidal dielectric waveguide and applications," Opt. Eng., Vol. 41, 2002.
doi:10.1117/1.1496490

14. Salzer, H. E., "Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms," Math. Tables andOther Aids to Comut., Vol. 9, 164-177, 1955.
doi:10.2307/2002053

15. Salzer, H. E., "Additional formulas and tables for orthogonal polynomials originating from inversion integrals," J. Math. Phys., Vol. 39, 72-86, 1961.

16. The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, Wilkinson House, Oxford.

17. Croitoru, N.D. Mendlovic, J. Dror, S. Ruschin, and E. Goldenberg, "Improved metallic tube infrared waveguides with inside dielectric coating," Proc. Soc. Photo-Opt. Instrum. Eng., Vol. 713, 6-11, 1986.