Vol. 3
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-12-11
Breast Cancer Detection Using a Hybrid Finite Difference Frequency Domain and Particle Swarm Optimization Techniques
By
Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008
Abstract
A hybrid technique based on Finite-difference frequency domain and particle swarm optimization techniques is proposed to reconstruct the breast cancer cell dimension and determines its position. Finite-difference frequency domain is formulated to calculate the scattered field after illuminating the breast by a microwave transmitter. Two-dimensional and three-dimensional models for the breast are used. The models include randomly distributed fatty breast tissue, glandular tissue, 2-mm thick skin, as well as chest wall tissue. The models are characterized by the dielectric properties of the normal breast tissue and malignant tissue at 800 MHz. Computer simulations have been performed by means of a numerical program; results show the capabilities of the proposed approach.
Citation
Saber Zainud-Deen, Walaa Hassan, Emadeldeen Hassan, and Kamal Awadalla, "Breast Cancer Detection Using a Hybrid Finite Difference Frequency Domain and Particle Swarm Optimization Techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703
References

1. Gunnarsson, T., Microwave imaging of biological tissues: Applied toward breast tumor detection, No. 73, Sweden, April 2007.

2. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoiewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging," IEEE Microw. Magazine, Vol. 3, No. 1, 48-56, Mar. 2002.
doi:10.1109/6668.990683

3. Liu, Q. H., Z. Q. Zhang, T. T. Wang, J. A. Brgan, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging I — 2-D forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 1, 123-133, Jan. 2002.
doi:10.1109/22.981256

4. Qi, H. R. and N. A. Diakides, "Thermal infrared imaging in early breast cancer detection—A survey of recent research," Proceeding of 25th Annual International Conference of IEEE, Vol. 2, No. 17–21, 1109-1112, Sept. 2003.

5. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Matew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 169-419, 2006.

6. Yan, L., K. Huang, and C. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

7. Wu, B.-I., F. C. Cox, and J. A. Kong, "Experimental methodology for non-thermal effects of electromagnetic radiation on biologics," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

8. Semenov, S. Y., et al. "Microwave tomography: Two-dimensional systemfor biological imaging," IEEE Transactions on Biomedical Engineering, Vol. 43, 869-877, 1996.
doi:10.1109/10.532121

9. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Two-dimensional FDTD analysis of a pulsed microwave confocal systemfor breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions of Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

10. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Eletromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

11. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal systemfor breast cancer detection: Design of an antenna array element," IEEE Transactions of Antennas and Propagation, Vol. 47, 783-791, 1999.
doi:10.1109/8.774131

12. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, 812-821, 2002.
doi:10.1109/TBME.2002.800759

13. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility of breast tumor detection and localization," IEEE MTT-S Digest, 383-386, 2003.

14. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 887-892, 2003.
doi:10.1109/TMTT.2003.808630

15. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatsis, "Microwave tomography: A two-dimensional newton iterative scheme," IEEE Trans. Microw. Theory Tech., Vol. 46, 1654-1659, 1998.
doi:10.1109/22.734548

16. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Trans. Med. Imag., Vol. 9, 218-225, Jun. 1990.
doi:10.1109/42.56334

17. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Trans. Microw. Theory Tech., Vol. 52, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016

18. Xiao, F. and H. Yabe, "Microwave imaging of perfect conducting cylinders fromreal data by micro genetic algorithmcoupled with deterministic method," IEICE Trans. Electron., Vol. E81-C, 1784-1792, 1998.

19. Liu, X.-F., Y.-B. Chen, Y.-C. Jiao, and F.-S. Zhang, "Modified particle swarmoptim ization for patch antenna a design based on IE3D," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 13, 1819-1828, 2007.

20. Al-Sharkawy, M. H., V. Demir, and A. Z. Elsherbeni, "Plane wave scattering fromthree dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. Antennas Propagat., Vol. 54, No. 2, 666-673, Feb. 2006.
doi:10.1109/TAP.2005.863129

21. Zainud-Deen, S. H., M. S. Ibrahim, and E. El-Deen, "A hybrid finite difference frequency domain and particle swarm optimization techniques for forward and inverse electromagnetic scattering problems," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1575-1580, March 19–23 2007.

22. Zainud-Deen, S. H., E. El-Deen, and M. S. Ibrahem, "Electromagnetic scattering by conducting/dielectric objects," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1866-1871, March 19–23 2007.

23. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetics waves," J. Comput. Phys., Vol. 144, 185-200, Oct. 1994.
doi:10.1006/jcph.1994.1159

24. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, 397-407, 2004.
doi:10.1109/TAP.2004.823969

25. Macea, J. R. and J. H. T. G. Fregnani, "Anatomy of thorocic wall, axillo and breast," Int. J. Morphol., 691-704, Oct. 2006.

26. Breast evaluation and treatment prevention early detection of breast cancer, University of Maryland Marlene and Stewart GreenebaumCancer Center, 2005.

27. Zhang, Z. Q. and Q. H. Liu, "Microwave imaging for breast tumor: 2D forward and inverse methods," IEEE Antennas Propag. Society International Symposium, Vol. 1, 242-245, July 2001.

28. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stocia, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, Aug. 2006.
doi:10.1109/TBME.2006.878058

29. Hagness, S. C., A. Taflove, and J. E. bridges, "FDTD modeling of a coherent- addition antenna array for early-stage detection of breast cancer," IEEE Antennas Propag. Society International Symposium, Vol. 2, 1220-1223, June 1998.