Vol. 12

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-01-13

Determination of Propagation Constants and Material Data from Waveguide Measurements

By Daniel Sjoberg
Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009
doi:10.2528/PIERB08121304

Abstract

This paper presents an analysis with the aim of characterizing the electromagnetic properties of an arbitrary linear, bianisotropic material inside a metallic waveguide. The result is that if the number of propagating modes is the same inside and outside the material under test, it is possible to determine the propagation constants of the modes inside the material by using scattering data from two samples with different lengths. Some information can also be obtained on the cross-sectional shape of the modes, but it remains an open question if this information can be used to characterize the material. The method is illustrated by numerical examples, determining the complex permittivity for lossy isotropic and anisotropic materials.

Citation


Daniel Sjoberg, "Determination of Propagation Constants and Material Data from Waveguide Measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304
http://www.jpier.org/PIERB/pier.php?paper=08121304

References


    1. Akhtar, M. J., L. E. Fehrer, and M. Thumm, "A waveguide-based two-step approach for measuring complex permittivity tensor of uniaxial composite materials," IEEE Trans. Microwave Theory Tech, Vol. 54, No. 5, 2011-2022, May 2006.
    doi:10.1109/TMTT.2006.873623

    2. Baker-Jarvis, J., R. G. Geyer, J. John H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, and C. M. Weil, "Dielectric characterization of low-loss materials: A comparison of techniques," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, No. 4, 571-577, Aug. 1998.
    doi:10.1109/94.708274

    3. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990.
    doi:10.1109/22.57336

    4. Barybin, A. A., "Modal expansions and orthogonal complements in the theory of complex media waveguide excitation by external sources for isotropic, anisotropic, and bianisotropic media," Progress In Electromagnetics Research, PIER 19, 241-300, 1998.

    5. Bresler, A. D., "The far fields excited by a point source in a passive dissipationless anisotropic uniform waveguide," IRE Trans. on Microwave Theory and Techniques, Vol. 7, No. 2, 282-287, Apr. 1959.
    doi:10.1109/TMTT.1959.1124694

    6. Bresler, A. D., "On the discontinuity problem at the input to an anisotropic waveguide," IRE Trans. on Antennas and Propagation, Vol. 7, No. 5, 261-272, Dec. 1959.
    doi:10.1109/TAP.1959.1144754

    7. Bresler, A. D., "Vector formulations for the field equations in anisotropic waveguides," IRE Trans. on Microwave Theory and Techniques, Vol. 7, No. 2, 298, Apr. 1959.
    doi:10.1109/TMTT.1959.1124701

    8. Bresler, A. D., G. H. Joshi, and N. Marcuvitz, "Orthogonality properties for modes in passive and active uniform wave guides," J. Appl. Phys., Vol. 29, No. 5, 794-799, May 1958.
    doi:10.1063/1.1723286

    9. Busse, G., J. Reinert, and A. F. Jacob, "Waveguide characterization of chiral material: Experiments," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 3, 297-301, 1999.
    doi:10.1109/22.750230

    10. Damaskos, N. J., R. B. Mack, A. L. Maffett, W. Parmon, and P. L. E. Uslenghi, "The inverse problem for biaxial materials," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 4, 400-405, Apr. 1984.
    doi:10.1109/TMTT.1984.1132689

    11. De Hoop, A. T., Handbook of Radiation and Scattering of Waves, Academic Press, San Diego, 1995.

    12. Deshpande, M. D., C. J. Reddy, P. I. Tiemsin, and R. Cravey, "A new approach to estimate complex permittivity of dielectric materials at microwave frequencies using waveguide measurements," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 3, 359-366, Mar. 1997.
    doi:10.1109/22.563334

    13. Frickey, D. A., "Conversions between S, Z, Y , h, ABCD, and T parameters which are valid for complex source and load impedance," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 2, 205-211, Feb. 1994.
    doi:10.1109/22.275248

    14. Gustafsson, M., Wave Splitting in Direct and Inverse Scattering Problems, PhD thesis, Lund Institute of Technology, Department of Electromagnetic Theory, P. O. Box 118, S-221 00 Lund, Sweden, 2000. http://www.eit.lth.se+.

    15. Queffelec, P., M. L. Floc'h, and P. Gelin, "Nonreciprocal cell for the broad-band measurement of tensorial permeability of magnetized ferrites: Direct problem," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 390-397, Aug. 1999.
    doi:10.1109/22.754870

    16. Queffelec, P., M. L. Floc'h, and P. Gelin, "New method for determining the permeability tensor of magnetized ferrites in a wide frequency range," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1344-1351, Aug. 2000.
    doi:10.1109/22.859479

    17. Reinert, J., G. Busse, and A. F. Jacob, "Waveguide characterization of chiral material: Theory," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 3, 290-296, 1999.
    doi:10.1109/22.750227

    18. Sjoberg, D., "Homogenization of dispersive material parameters for Maxwell's equations using a singular value decomposition," Multiscale Modeling and Simulation, Vol. 4, No. 3, 760-789, 2005.
    doi:10.1137/040614153

    19. Sjoberg, D., C. Engstrom, G. Kristensson, D. J. N. Wall, and N. Wellander, "A Floquet-Bloch decomposition of Maxwell's equations, applied to homogenization," Multiscale Modeling and Simulation, Vol. 4, No. 1, 149-171, 2005.
    doi:10.1137/040607034

    20. Wolfson, B. J. and S. M. Wentworth, "Complex permittivity and permeability measurement using a rectangular waveguide," Microwave Opt. Techn. Lett., Vol. 27, No. 3, 180-182, Nov. 2000.
    doi:10.1002/1098-2760(20001105)27:3<180::AID-MOP9>3.0.CO;2-D

    21. Wu, X., "A linear-operator formalism for bianisotropic waveguides," Int. J. Infrared and MM Waves, Vol. 16, No. 2, 419-434, 1995.
    doi:10.1007/BF02096328

    22. Xu, Y. and R. G. Bosisio, "An efficient method for study of general bi-anisotropic waveguides," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 873-879, Apr. 1995.
    doi:10.1109/22.375237

    23. Xu, Y. and R. G. Bosisio, "A study on the solutions of chirowaveguides and bianisotropic waveguides with the use of coupled-mode analysis," Microwave Opt. Techn. Lett., Vol. 14, No. 5, 308-311, Apr. 1997.
    doi:10.1002/(SICI)1098-2760(19970405)14:5<308::AID-MOP17>3.0.CO;2-2