Vol. 58
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-01-30
An Approximate Approach to Determining the Permittivity and Permeability Near Lambda/2 Resonances in Transmission/Reflection Measurements
By
Progress In Electromagnetics Research B, Vol. 58, 95-109, 2014
Abstract
We present a simple and straightforward approximate approach to removing resonant artifacts that arise in the material parameters extracted near half-wavelength resonances that arise from transmission/reflection (T/R) measurements on low-loss materials. In order to determine material parameters near one such λ/2 resonance, by means of the 1st-order regressions for the input impedance of the sample-loaded transmission line, we approximate the characteristic impedance of the sample-filled section that is, in turn, dependent either on the relative wave impedance in a coaxial transmission line or on the relative permeability in a rectangular waveguide case. The other material parameters are then found, supplemented with the refractive index obtained from the conventional T/R method. This method applies to both coaxial transmission line and rectangular waveguide measurements. Our approach is validated by use of S-parameters simulated for a low-loss magnetic material, and is also applied to determine the relative permittivity and permeability from S-parameters measured for nylon and lithium-ferrite samples. The results are discussed as compared to those from the well-known Nicolson-Ross-Weir (NRW) method and are experimentally compared to those from the Baker-Jarvis (BJ) method as well.
Citation
Sung Kim, and James Baker-Jarvis, "An Approximate Approach to Determining the Permittivity and Permeability Near Lambda/2 Resonances in Transmission/Reflection Measurements," Progress In Electromagnetics Research B, Vol. 58, 95-109, 2014.
doi:10.2528/PIERB13121308
References

1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, NJ, 2004.
doi:10.1002/0470020466

2. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, building materials, and negative-index materials,", National Institute of Standards and Technology Technical Note 1536, 2003.

3. Baker-Jarvis, J., M. D. Janezic, and D. C. DeGroot, "High-frequency dielectric measurements," IEEE Instrum. Meas. Magazine, Vol. 13, 24-31, 2010.
doi:10.1109/MIM.2010.5438334

4. Fenner, R. A., E. J. Rothwell, and L. L. Frasch, "A comprehensive analysis of free-space and guided-wave technique for extracting the permittivity and permeability of materials using reflection-only measurements," Radio Sci., Vol. 47, RS1044, 2012.
doi:10.1029/2011RS004755

5. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," EEE Trans. Microw. Theory Tech., Vol. 57, 2257-2267, 2009.
doi:10.1109/TMTT.2009.2027160

6. Qi, J., H. Kettunen, H. Wallen, and A. Sihvola, "Compensation of Fabry-Perot resonances in homogenization of dielectric composites," EEE Antennas Wireless Propag. Lett., Vol. 9, 1057-1060, 2010.
doi:10.1109/LAWP.2010.2091103

7. Liu, X.-X., D. A. Powell, and A. Alu, "Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures," Phys. Rev. B, Vol. 84, 235106, 2011.
doi:10.1103/PhysRevB.84.235106

8. Boughriet, A.-H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, 52-57, 1997.
doi:10.1109/22.552032

9. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Technol., Vol. 19, 055706, 2008.
doi:10.1088/0957-0233/19/5/055706

10. Hasar, U. C. and C. R.Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

11. Nicolson, A. M. and G. F. Ross, "Measurement of intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

12. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

13. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

14. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line method for measuring permittivity and permeability,", National Institute of Standards and Technology Technical Note 1355-R, 1993.
doi:10.1109/22.57336

15. Smith, D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from re°ection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

16. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pachenco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 1-7, 2004.

17. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1563-1574, 2010.
doi:10.1163/156939310792149759

18. Pozar, D. M., Microwave Engineering, 2nd Ed., Chapter 6, Wiley, NJ, 1998.

19. Challa, R. K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2010.