Vol. 70
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-09-26
Hierarchical Layer-Multiple-Scattering Theory for Metamaterials of Clusters of Nonspherical Particles
By
Progress In Electromagnetics Research B, Vol. 70, 13-26, 2016
Abstract
We present a hierarchical layer-multiple-scattering method of electromagnetic waves for the study of photonic structures consisting of many-scatterers per unit cell (clusters of scatterers) where the scatterers are in general non-spherical and/or anisotropic or inhomogeneous. Our approach is a two-stage process where we take into account all the multiple-scattering events involved: (a) among the scatterers of the cluster comprising the unit cell of the structure, and (b) among the clusters within the structure. As text cases, we model the optical properties of plasmonic metamaterials made from clusters of gold nanocubes.
Citation
Vassilios Yannopapas , "Hierarchical Layer-Multiple-Scattering Theory for Metamaterials of Clusters of Nonspherical Particles," Progress In Electromagnetics Research B, Vol. 70, 13-26, 2016.
doi:10.2528/PIERB16072103
http://www.jpier.org/PIERB/pier.php?paper=16072103
References

1. Gonis, A. and W. H. Butler, Multiple Scattering in Solids, Springer, New York, 2000.
doi:10.1007/978-1-4612-1290-4

2. Wang, X., X.-G. Zhang, Q. Yu, and B. N. Harmon, "Multiple-scattering theory for electromagnetic waves," Phys. Rev. B, Vol. 47, No. 8, 4161-4167, 1993.
doi:10.1103/PhysRevB.47.4161

3. Moroz, A., "Density-of-states calculations and multiple-scattering theory for photons," Phys. Rev. B, Vol. 51, No. 4, 2068-2081, 1995.
doi:10.1103/PhysRevB.51.2068

4. Stefanou, N., V. Karathanos, and A. Modinos, "Scattering of electromagnetic waves by periodic structures," J. Phys.: Condens. Matter, Vol. 4, No. 36, 7389-7400, 1992.
doi:10.1088/0953-8984/4/36/013

5. Stefanou, N., V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: Frequency bands and transmission coefficients," Comput. Phys. Commun., Vol. 113, No. 1, 49-77, 1998.
doi:10.1016/S0010-4655(98)00060-5

6. Stefanou, N., V. Yannopapas, and A. Modinos, "MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun., Vol. 132, No. 1-2, 189-196, 2000.
doi:10.1016/S0010-4655(00)00131-4

7. Gantzounis, G. and N. Stefanou, "Layer-multiple-scattering method for photonic crystals of nonspherical particles," Phys. Rev. B, Vol. 73, No. 035115, 2006.

8. Gantzounis, G., N. Stefanou, and N. Papanikolaou, "Multiple-scattering calculations for layered phononic structures of nonspherical particles," Phys. Rev. B, Vol. 77, No. 214301, 2008.

9. Tserkezis, C., N. Papanikolaou, G. Gantzounis, and N. Stefanou, "Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures," Phys. Rev. B, Vol. 78, No. 165114, 2008.

10. Christofi, A., N. Stefanou, G. Gantzounis, and N. Papanikolaou, "Spiral-staircase photonic structures of metallic nanorods," Phys. Rev. B, Vol. 84, No. 125109, 2011.

11. Christofi, A. and N. Stefanou, "Nonreciprocal optical response of helical periodic structures of plasma spheres in a static magnetic field," Phys. Rev. B, Vol. 87, No. 115125, 2013.

12. Christofi, A. and N. Stefanou, "Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres," Phys. Rev. B, Vol. 88, No. 125133, 2013.

13. Christofi, A. and N. Stefanou, "Layer multiple scattering calculations for nonrecirpocal photonic structures," Int. J. Mod. Phys. B, Vol. 28, No. 1441012, 2014.

14. Muhlig, S., C. Rockstuhl, V. Yannopapas, T. Burgi, N. Shalkevich, and F. Lederer, "Optical properties of a fabricated self-assembled bottom-up bulk metamaterial," Opt. Express, Vol. 19, No. 10, 9607-9616, 2011.
doi:10.1364/OE.19.009607

15. Yannopapas, V. and A. Vanakaras, "Dirac point in the photon dispersion relation of a negative/zero/positive-index plasmonic metamaterial," Phys. Rev. B, Vol. 84, No. 045128, 2011.

16. Yannopapas, V. and A. Vanakaras, "Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles," Phys. Rev. B, Vol. 84, No. 085119, 2011.

17. Yannopapas, V., "Layer-multiple-scattering method for photonic structures of general scatterers based on a discrete-dipole approximation/T-matrix point-matching method," J. Opt. Soc. Am. B, Vol. 31, No. 3, 631-636, 2014.
doi:10.1364/JOSAB.31.000631

18. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1975.

19. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

20. Sainidou, R., N. Stefanou, and A. Modinos, "Green's function formalism for phononic crystals," Phys. Rev. B, Vol. 69, No. 064301, 2004.

21. Purcell, E. M. and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., Vol. 186, 705-714, 1973.
doi:10.1086/152538

22. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491

23. Yurkin, M. A. and A. G. Hoekstra, "The discrete dipole approximation: An overview and recent developments," J. Quant. Spec. Rad. Transfer, Vol. 106, No. 1-3, 558-589, 2007.
doi:10.1016/j.jqsrt.2007.01.034

24. Chaumet, P. C. and A. Rahmani, "Efficient iterative solution of the discrete dipole approximation for magnetodielectric scatterers," Opt. Lett., Vol. 34, No. 7, 917-919, 2009.
doi:10.1364/OL.34.000917

25. Loke, V. L. Y., T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "T- matrix calculation via discrete dipole approximation, point matching and exploiting symmetry," J. Quantit. Spectrosc. Radiat. Transfer, Vol. 110, No. 14-16, 1460-1471, 2009.
doi:10.1016/j.jqsrt.2009.01.013

26. Loke, V. L. Y., T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "FDFD/T-matrix hybrid method," J. Quantit. Spectrosc. Radiat. Transfer, Vol. 106, No. 1-3, 274-284, 2007.
doi:10.1016/j.jqsrt.2007.01.040

27. Menzel, C., S. Muhlig, C. Rockstuhl, and F. Lederer, "Multipole analysis of meta-atoms," Metamaterials, Vol. 5, No. 2-3, 64-73, 2011.
doi:10.1016/j.metmat.2011.03.003

28. Yannopapas, V. and N. V. Vitanov, "Electromagnetic Greens tensor and local density of states calculations for collections of spherical scatterers," Phys. Rev. B, Vol. 75, No. 115124, 2007.

29. Johnson, R. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

30. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.
doi:10.1038/nmat3839