Vol. 78
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-08-18
Anatomically and Dielectrically Realistic Microwave Head Phantom with Circulation and Reconfigurable Lesions
By
Progress In Electromagnetics Research B, Vol. 78, 47-60, 2017
Abstract
Phantoms provide valuable test platforms for developing medical devices. Solid materials in particular allow fabrication of stable and robust models. This paper presents a novel, anatomically realistic, multi-layered head phantom made from dielectrically accurate, stable, easily mouldable, low-cost tissue-mimicking materials for testing of microwave diagnostic systems. Also incorporated is a mechanism for inserting reconfigurable lesions and a novel circulatory system modelling physiology. Tissue-mimicking materials composed of graphite, carbon black, and polyurethane with small volumes of acetone or isopropanol were fabricated and dielectric properties were measured across the 1 - 8.5 GHz band. The tissuemimicking material properties were adjusted until their dielectric properties matched those of reference values for target tissues of interest, thereby emulating: weighted aggregates of head tissues external to the brain, tissues comprising the brain, and blood. 3D printed anatomically realistic head and brain moulds cast the phantom mixtures for each layer. Cylindrical holes in the brain layer allow insertion of pathological lesion phantoms, such as haemorrhages. Tubing embedded in the brain layer forms a symmetrical loop providing a novel simplistic model of circulation. The resulting head phantom is anatomically realistic, dielectrically stable, enables pathology modelling, and has, uniquely, a circulatory loop. This novel head phantom provides a valuable test platform for microwave diagnostic studies.
Citation
Barry McDermott, Emily Porter, Adam Santorelli, Brendan Divilly, Liam Morris, Marggie Jones, Brian McGinley, and Martin O'Halloran, "Anatomically and Dielectrically Realistic Microwave Head Phantom with Circulation and Reconfigurable Lesions," Progress In Electromagnetics Research B, Vol. 78, 47-60, 2017.
doi:10.2528/PIERB17071805
References

1. Bath, P. M. W., "ABC of arterial and venous disease: Acute strok," BMJ, Vol. 320, No. 7239, 920-923, Apr. 2000.
doi:10.1136/bmj.320.7239.920

2. Lee, B. and A. Newberg, "Neuroimaging in traumatic brain imaging," NeuroRX, Vol. 2, No. 2, 372-383, Apr. 2005.
doi:10.1602/neurorx.2.2.372

3. Birenbaum, D., L. W. Bancroft, and G. J. Felsberg, "Imaging in acute stroke," West. J. Emerg. Med., Vol. 12, No. 1, 67-76, Feb. 2011.

4. Semenov, S., "Microwave tomography: Review of the progress towards clinical applications," Philos. Trans. A. Math. Phys. Eng. Sci., Vol. 367, 3021-3042, 2009.
doi:10.1098/rsta.2009.0092

5. Garrett, J. and E. Fear, "A new breast phantom with a durable skin layer for microwave breast imaging," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1693-1700, 2015.
doi:10.1109/TAP.2015.2393854

6. Mobashsher, A. T. and A. M. Abbosh, "Artificial human phantoms: Human proxy in testing microwave apparatuses that have electromagnetic interaction with the human body," IEEE Microw. Mag., Vol. 16, No. 16, 42-62, 2015.
doi:10.1109/MMM.2015.2419772

7. Fear, E. C., P. M. Meaney, and M. Stuchly, "Microwaves for breast cancer detection?," IEEE Potential, Vol. 22, No. 1, 12-18, Feb. 2003.
doi:10.1109/MP.2003.1180933

8. Garrett, J. and E. Fear, "Stable and flexible materials to mimic the dielectric properties of human soft tissues," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 599-602, 2014.
doi:10.1109/LAWP.2014.2312925

9. Peyman, A., A. A. Rezazadeh, and C. Gabriel, "Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies," Phys. Med. Biol., Vol. 46, No. 6, 1617-1629, Jun. 2001.
doi:10.1088/0031-9155/46/6/303

10. Kobayashi, T., T. Nojima, K. Yamada, and S. Uebayashi, "Dry phantom composed of ceramics and its application to SAR estimation," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 1, 136-140, 1993.
doi:10.1109/22.210240

11. Watanabe, S.-I., H. Taki, T. Nojima, and O. Fujiwara, "Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 10, 1874-1883, 1996.
doi:10.1109/22.539946

12. Mobashsher, A. T. and A. M. Abbosh, "Three-dimensional human head phantom with realistic electrical properties and anatomy," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1401-1404, 2014.
doi:10.1109/LAWP.2014.2340409

13. Otterskog, M., N. Petrovic, and P. O. Risman, "A multi-layered head phantom for microwave investigations of brain hemorrhages," 2016 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, 2016.

14. Santorelli, A., O. Laforest, E. Porter, and M. Popovi, "Image classification for a time-domain microwave radar system: Experiments with stable modular breast phantoms," European Conference on Antennas and Propagation (EuCAP), 2015.

15. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-49, 1996.
doi:10.1088/0031-9155/41/11/001

16. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-93, 1996.
doi:10.1088/0031-9155/41/11/003

17. Hasgall, P., F. DiGennaro, C. Baumgartner, E. Neufeld, M. Gosselin, D. Payne, A. Klingenbock, and N. Kuster, "IT’IS Database for thermal and electromagnetic parameters of biological tissues,", 2015, [Online], Available: www.itis.ethz.ch/database, [Accessed: 25-Nov-2016].

18. Grozny "Thingiverse --- Human Head,", [Online], Available: http://www.thingiverse.com/thing: 172348, [Accessed: 15-Feb-2017].

19. Dilmen, N., "NIH 3D print exchange --- Brain MRI,", [Online], Available: https://3dprint.nih.gov/discover/3DPX-002739, [Accessed: 15-Feb-2017].

20. Foster, K. R., J. L. Schepps, R. D. Stoy, and H. P. Schwan, "Dielectric properties of brain tissue between 0.01 and 10 GHz," Phys. Med. Biol., Vol. 24, No. 6, 1177-1187, 1979.
doi:10.1088/0031-9155/24/6/008

21. Schmid, G., G. Neubauer, and P. R. Mazal, "Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz," Bioelectromagnetics, Vol. 24, No. 6, 423-430, 2003.
doi:10.1002/bem.10123

22. Gabriel, C. and A. Peyman, "Dielectric measurement: Error analysis and assessment of uncertainty," Phys. Med. Biol., Vol. 51, No. 23, 6033-6046, 2006.
doi:10.1088/0031-9155/51/23/006

23. Pethig, R., "Dielectric properties of body tissues," Clin. Phys. Physiol. Meas., Vol. 8, No. Suppl A, 5-12, 1987.
doi:10.1088/0143-0815/8/4A/002

24. Hyttinen, J., P. Kauppinen, T. Koobi, and J. Malmivuo, "Importance of the tissue conductivity values in modelling the thorax as a volume conductor," 19th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vol. 19, No. C, 2082-2085, 1997.

25. Gabriel, C., "Dielectric properties of biological tissue: Variation with age," Bioelectromagnetics, Vol. 26, No. SuppL. 7, 12-18, 2005.
doi:10.1002/bem.20147

26. Luders, E., H. Steinmetz, and L. Jancke, "Brain size and grey matter volume in the healthy human brain," Neuroreport, Vol. 13, No. 17, 2371-4, 2002.
doi:10.1097/00001756-200212030-00040

27. Makris, N., L. Angelone, S. Tulloch, S. Sorg, J. Kaiser, D. Kennedy, and G. Bonmassar, Absorption Rate Mapping, Vol. 46, No. 12, 1239-1251, 2010.

28. Kim, D.-Y., R. Jung, H.-S. Kim, and H.-J. Jin, "Electrically conductive polymeric nanocomposites prepared in alcohol dispersion of multiwalled carbon nanotubes," Mol. Cryst. Liq. Cryst., Vol. 491, No. 1, 255-263, Sep. 2008.
doi:10.1080/15421400802330853

29. Stokes, M. G., C. D. Chambers, I. C. Gould, T. R. Henderson, N. E. Janko, N. B. Allen, J. B. Mattingley, A. T. Barker, M. Dervinis, F. Verbruggen, L. Maizey, R. C. Adams, R. Henderson, and B. Jason, "Simple metric for scaling motor threshold based on scalp-cortex distance: Application to studies using transcranial magnetic stimulation simple metric for scaling motor threshold based on scalp-cortex distance: Application to studies using transcranial," J. Neurophysiol., Vol. 94, No. 6, 4520-7, 2005.
doi:10.1152/jn.00067.2005

30. Standring, S., Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 40th Ed., Elsevier, 2009.

31. Sims, J. R., L. R. Gharai, P. W. Schaefer, M. Vangel, E. S. Rosenthal, M. H. Lev, and L. H. Schwamm, "ABC/2 for rapid clinical estimate of infarct, perfusion, and mismatch volumes," Neurology, Vol. 72, No. 24, 2104-2110, 2009.
doi:10.1212/WNL.0b013e3181aa5329

32. Mobashsher, A. T., K. S. Bialkowski, A. M. Abbosh, and S. Crozier, "Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection," PLoS One, Vol. 11, No. 4, Apr. 2016.
doi:10.1371/journal.pone.0152351

33. Curry, R. A. and B. B. Tempkin, Sonography --- E-Book: Introduction to Normal Structure and Function, 3rd Ed., Saunders, 2014.