1. Nyfors, E. and P.V ainikainen, Industrial Microwave Sensors, Artech House, 1989.
2. Rzepecka, M. and M. Hamid, "Automatic digital method for measuring the permittivity of thing dielectric films," IEEE Trans. Microwave Theory Tech., Vol. 20, No. 1, 30-37, 1972.
doi:10.1109/TMTT.1972.1127675 Google Scholar
3. Zal'tzman, E. B., V. N. Mal'tzev, A. N. Sivov, and V. I. Tokatly, "On the problem of nondestructive measurement of the dielectric permittivity of films and plates," Radiotechnika & Electronika, Vol. 22, No. 4, 93-95, 1977. Google Scholar
4. Huang, R. F. and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103 Google Scholar
5. Kumar, A., S. Sharma, and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204 Google Scholar
6. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801 Google Scholar
7. Moradi, D. and A. Abdipour, "Measuring the permittivity of dielectric materials using STDR approach," Progress In Electromagnetics Research, Vol. 77, 357-365, 2007.
doi:10.2528/PIER07080201 Google Scholar
8. Kuharchik, P. D., I. A. Titovitsky, A. C. Belyachits, and N. I. Kourilo, "Multi-channel microwave resonator moisture-mass meter of paper web," Summ. Contr. on Electromagnetic Wave Interaction with Water and Moist Substances, 135-137,TAB-IEEE Press,New York, 1996. Google Scholar
9. Das, S., A. Chakrabarty, and A. Chakraborty, "Characteristics of an offset longitudinal/transverse slot coupled crossed waveguide junction using multiple cavity modeling technique considering the TE00 mode at the slot aperture," Progress In Electromagnetics Research, Vol. 67, 297-316, 2007.
doi:10.2528/PIER06092701 Google Scholar
10. Nesterenko, M. V., V. A. Katrich, and Yu. M. Penkin, "Analytical methods in theory of slot-hole coupling of electrodynamics volumes," Progress In Electromagnetics Research, Vol. 70, 174, 2007. Google Scholar
11. Zhao, X. W., X. J. Dang, Y. Zhang, and C. H. Liang, "MLFMA analysis of waveguide arrays with narrow-wall slots," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 8, 1063-1078, 2007. Google Scholar
12. Kim, J. H. and H. J. Eom, "Radiation from multiple annular slots on a circular cavity," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 1, 47-56, 2007.
doi:10.1163/156939307779391713 Google Scholar
13. Kuharchik, P. D., V. M. Serdyuk, I. A. Titovitsky, A. C. Belyachits, and N. I. Kourilo, "Theoretical model of calculation of the microwave complex permittivity of paper," Journ. Commun. Technol. Electron., Vol. 46, No. 11, 1264-1269, 2001. Google Scholar
14. Kuharchik, P. D., V. M. Serdyuk, I. A. Titovitsky, A. C. Belyachits, and N. I. Kourilo, "The microwave complex permittivity of paper: a new theoretical model," Fourth Int. Conf. on Electromagnetic Wave Interaction with Water and Moist Substances, 62-69, MFPA, Weimar, 2001.
15. Kuharchik, P. D., V. M. Serdyuk, and I. A. Titovitsky, "Hybrid modes of the cylindrical resonator with a transverse ring slot and a plane dielectric," Journ. Commun. Technol. Electron., Vol. 46, No. 5, 483-489, 2001. Google Scholar
16. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Calculation of electromagnetic fields in cavity resonators with allowance for energy flux through slots," Technical Physics, Vol. 52, No. 4, 482, 2007.
doi:10.1134/S1063784207040123 Google Scholar
17. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon Press, 1989.
18. Owyang, G. H., Foundations for Microwave Circuits, Springer, 1989.
19. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, 1971.
20. Thabet, R. and M. L. Riabi, "Rigorous design and efficient optimization of quarter-wave transformer in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 68, 15-33, 2007. Google Scholar
21. Orfanidis, A. P., G. A. Kyriacou, and J. N. Sahalos, "Numerical analysis of cylindrical cavities used for microwave heating, employing the mode matching technique," PIERS Online, Vol. 3, No. 8, 1228-1231, 2007.
doi:10.2529/PIERS070220153130 Google Scholar
22. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using the Fourier series expansion," Journal of Eletromagnetic Waves and Applications, Vol. 20, No. 10, 1299-1310, 2006.
doi:10.1163/156939306779276758 Google Scholar
23. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, Golem Press, 1969.
24. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen with a transverse dielectric layer," Technical Physics, Vol. 51, No. 6, 777-785, 2006.
doi:10.1134/S1063784206060144 Google Scholar
25. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.
26. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of arbitrary thickness," Technical Physics, Vol. 50, No. 8, 1076-1083, 2005.
doi:10.1134/1.2014542 Google Scholar
27. Jeffreys, H. and B. Swirles, Methods of Mathematical Physics, Cambridge University Press, 1966.
28. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-Posed Problems, Halsted Press, 1977.
29. Watson, W. A., T. Philipson, and P. Oates, Numerical Analysis — The Mathematics of Computing, Vol. 1, Arnold, 1970.