Vol. 3
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-12-17
Diffraction of Hybrid Modes in a Cylindrical Cavity Resonator by a Transverse Circular Slot with a Plane Anisotropic Dielectric Layer
By
Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008
Abstract
A rigorous solution of the homogeneous Maxwell equations for hybrid modes of a microwave cylindrical cavity with a transverse annular slot in the perfectly conducting walls of arbitrary thickness and a plane infinite anisotropic dielectric passing through the slot is constructed based on eigenfunction expansion. In each of the field existence regions (the cavity itself, the interior of a slot and outer space), the field solution is constructed as a superposition of natural piecewise harmonic and exponential modes that allow for reflection and refraction at the plane boundaries of the dielectric.The dependence of the complex wave number of free oscillations of a resonant system on its geometrical parameters and on complex permittivity of the dielectric is investigated. It is shown that a cylindrical cavity with a transverse annular slot is a stable and high-sensitive system for online measuring of dielectric parameters.
Citation
Peter Kukharchik, Vladimir Serdyuk, and Joseph Titovitsky, "Diffraction of Hybrid Modes in a Cylindrical Cavity Resonator by a Transverse Circular Slot with a Plane Anisotropic Dielectric Layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502
References

1. Nyfors, E. and P.V ainikainen, Industrial Microwave Sensors, Artech House, Norwood, 1989.

2. Rzepecka, M. and M. Hamid, "Automatic digital method for measuring the permittivity of thing dielectric films," IEEE Trans. Microwave Theory Tech., Vol. 20, No. 1, 30-37, 1972.
doi:10.1109/TMTT.1972.1127675

3. Zal'tzman, E. B., V. N. Mal'tzev, A. N. Sivov, and V. I. Tokatly, "On the problem of nondestructive measurement of the dielectric permittivity of films and plates," Radiotechnika & Electronika, Vol. 22, No. 4, 93-95, 1977.

4. Huang, R. F. and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103

5. Kumar, A., S. Sharma, and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204

6. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801

7. Moradi, D. and A. Abdipour, "Measuring the permittivity of dielectric materials using STDR approach," Progress In Electromagnetics Research, Vol. 77, 357-365, 2007.
doi:10.2528/PIER07080201

8. Kuharchik, P. D., I. A. Titovitsky, A. C. Belyachits, and N. I. Kourilo, "Multi-channel microwave resonator moisture-mass meter of paper web," Summ. Contr. on Electromagnetic Wave Interaction with Water and Moist Substances, 135-137,TAB-IEEE Press,New York, 1996.

9. Das, S., A. Chakrabarty, and A. Chakraborty, "Characteristics of an offset longitudinal/transverse slot coupled crossed waveguide junction using multiple cavity modeling technique considering the TE00 mode at the slot aperture," Progress In Electromagnetics Research, Vol. 67, 297-316, 2007.
doi:10.2528/PIER06092701

10. Nesterenko, M. V., V. A. Katrich, and Yu. M. Penkin, "Analytical methods in theory of slot-hole coupling of electrodynamics volumes," Progress In Electromagnetics Research, Vol. 70, 174, 2007.

11. Zhao, X. W., X. J. Dang, Y. Zhang, and C. H. Liang, "MLFMA analysis of waveguide arrays with narrow-wall slots," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 8, 1063-1078, 2007.

12. Kim, J. H. and H. J. Eom, "Radiation from multiple annular slots on a circular cavity," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 1, 47-56, 2007.
doi:10.1163/156939307779391713

13. Kuharchik, P. D., V. M. Serdyuk, I. A. Titovitsky, A. C. Belyachits, and N. I. Kourilo, "Theoretical model of calculation of the microwave complex permittivity of paper," Journ. Commun. Technol. Electron., Vol. 46, No. 11, 1264-1269, 2001.

14. Kuharchik, P. D., V. M. Serdyuk, I. A. Titovitsky, A. C. Belyachits, and N. I. Kourilo, "The microwave complex permittivity of paper: a new theoretical model," Fourth Int. Conf. on Electromagnetic Wave Interaction with Water and Moist Substances, 62-69, MFPA, Weimar, 2001.

15. Kuharchik, P. D., V. M. Serdyuk, and I. A. Titovitsky, "Hybrid modes of the cylindrical resonator with a transverse ring slot and a plane dielectric," Journ. Commun. Technol. Electron., Vol. 46, No. 5, 483-489, 2001.

16. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Calculation of electromagnetic fields in cavity resonators with allowance for energy flux through slots," Technical Physics, Vol. 52, No. 4, 482, 2007.
doi:10.1134/S1063784207040123

17. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon Press, Oxford, 1989.

18. Owyang, G. H., Foundations for Microwave Circuits, Springer, New York, 1989.

19. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, New York, 1971.

20. Thabet, R. and M. L. Riabi, "Rigorous design and efficient optimization of quarter-wave transformer in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 68, 15-33, 2007.

21. Orfanidis, A. P., G. A. Kyriacou, and J. N. Sahalos, "Numerical analysis of cylindrical cavities used for microwave heating, employing the mode matching technique," PIERS Online, Vol. 3, No. 8, 1228-1231, 2007.
doi:10.2529/PIERS070220153130

22. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using the Fourier series expansion," Journal of Eletromagnetic Waves and Applications, Vol. 20, No. 10, 1299-1310, 2006.
doi:10.1163/156939306779276758

23. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, Golem Press, Boulder, 1969.

24. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen with a transverse dielectric layer," Technical Physics, Vol. 51, No. 6, 777-785, 2006.
doi:10.1134/S1063784206060144

25. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

26. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of arbitrary thickness," Technical Physics, Vol. 50, No. 8, 1076-1083, 2005.
doi:10.1134/1.2014542

27. Jeffreys, H. and B. Swirles, Methods of Mathematical Physics, Cambridge University Press, Cambridge, 1966.

28. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-Posed Problems, Halsted Press, New York, 1977.

29. Watson, W. A., T. Philipson, and P. Oates, Numerical Analysis — The Mathematics of Computing, Vol. 1, Arnold, London, 1970.