Vol. 3
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-12-27
Combination of Mls , GA & Cg for the Reduction of RCS of Multilayered Cylindrical Structures Composed of Dispersive Metamaterials
By
Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008
Abstract
In this paper the electromagnetic wave scattering from multilayered cylindrical structures is studied for a normally incident plane wave with linear (TE or TM), circular and elliptical polarizations. The cylindrical layers may be composed of any combination of dispersive common materials and metamaterials. The addition theorems for the cylindrical waves are used for the EM wave analysis. The objective of this study is to decrease or increase the Radar Cross Section (RCS) in an ultra wide band width. The optimization is based on the Method of Least Squares (MLS), employing a novel combination of the Genetic Algorithm (GA) and Conjugate Gradient (CG), where the global search for the minimization point is performed by GA and the local search is done by CG, which greatly speeds up the search algorithm. The behaviors of various combinations of common materials and metamaterials for reduction of RCS are studied. Furthermore, the procedures for selection of correct signs for metamaterial parameters, namely ε, μ, k and η are presented.
Citation
Homayoon Oraizi, and Ali Abdolali, "Combination of Mls , GA & Cg for the Reduction of RCS of Multilayered Cylindrical Structures Composed of Dispersive Metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07120803
References

1. Knot, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross-Section, Artech House, Norwood, MA, 1986.

2. Skolnik, M. I., Radar Handbook, McGrawhill, NY, 1986.

3. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, Englewood Cliffs, 1991.

4. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, Masachusetts, 1996.

5. Ramprecht, J. and D. Sjeberg, "Biased magnetic materials in RAM applications," Progress In Electromagnetics Research, Vol. 75, 85-117, 2007.
doi:10.2528/PIER07052501

6. Chamaani, S., S. A. Mirta, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

7. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructure," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

8. Pendry, J., A. Holden, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 18, 2075-2084, 1999.
doi:10.1109/22.798002

9. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayerd cylindrical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
doi:10.2528/PIER07090305

10. Lee, Y. S., C. C. Chiu, and Y. S. Lin, "Electromagnetic imaging for an imperfectly conducting cylinder buried in a three-layer structure by the genetic algorithm," Progress In Electromagnetics Research, Vol. 48, 27-44, 2004.
doi:10.2528/PIER03120304

11. Yang, J., L. W. Li, K. Yasumoto, and C. H. Liang, "Two-dimensional scattering of a Gaussian beam by a periodic array of circular cylinders," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 2, 280-285, 2005.
doi:10.1109/TGRS.2004.841416

12. Wang, X. D., Y. B. Gan, and L. W. Li, "Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 319-322, 2003.
doi:10.1109/LAWP.2003.822200

13. Zhang, M., T. S. Yeo, L. W. Li, and M. S. Leong, "Electromagnetic scattering by a multilayer gyrotropic bianisotropic circular cylinder," Progress In Electromagnetics Research, Vol. 40, 91-111, 2002.

14. Yang, J., L. W. Li, and C. H. Liang, "Two-dimensional scattering by a periodic array of gyrotropic cylinders embedded in a dielectric slab," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 18-21, 2003.
doi:10.1109/LAWP.2003.810774

15. Veselago, V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

16. Xu, Z., W. Lin, and L. Kong, "Controllable absorbing structure of metamaterial at microwave," Progress In Electromagnetics Research, Vol. 69, 117-125, 2007.
doi:10.2528/PIER06120801

17. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER07071905

18. Moss, C. D., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left handed metamaterials," Progress In Electromagnetics Research, Vol. 35, 315-334, 2002.
doi:10.2528/PIER02052409

19. Oraizi, H., "Application of the method of least squares to electromagnetic engineering problems," IEEE Antenna and Propagation Magazine, Vol. 48, No. 1, 50-75, 2006.
doi:10.1109/MAP.2006.1645560

20. Michielssen, E., J.-M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 67, 1024-1031, June/July 1993.
doi:10.1109/22.238519

21. Xu, Z., H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07091901

22. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIER07031506

23. Qing, A. and C. K. Lee, "Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm coupled with Newton-Kantorivitch method," Progress In Electromagnetics Research, Vol. 28, 275-294, 2000.
doi:10.2528/PIER99111102

24. Choi, S., "Application of conjugate gradient method for optimum array processing," Progress In Electromagnetics Research, Vol. 05, 589-624, 1991.

25. Tang, C. C. H., Backscattering from dielectrically coated infinite cylindrical obstacles, Ph.D. Thesis, Harvard University, 1956.