1. Dragone, C., "New grids for improved polarization diplexing of microwaves in reflector antennas," IEEE Trans. Antennas Propagat., Vol. 26, 459-463, Mar. 1978.
doi:10.1109/TAP.1978.1141861 Google Scholar
2. Hanfling, J. D., G. Jerinic, and L. R. Lewis, "Twist reflector design using E-type and H-type modes," IEEE Trans. Antennas Propagat., Vol. 29, 622-629, July 1981.
doi:10.1109/TAP.1981.1142632 Google Scholar
3. Lier, E. and P.-S. Kildal, "Soft and hard horn antenna," IEEE Trans. Antennas Propagat., Vol. 36, 1152-1157, 1988.
doi:10.1109/8.7229 Google Scholar
4. Lier, E., "Analysis of soft and hard strip-loaded horns using a circular cylindrical model," IEEE Trans. Antennas Propagat., Vol. 38, 783-793, June 1990.
doi:10.1109/8.55573 Google Scholar
5. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 38, 1537-1544, 1990.
doi:10.1109/8.59765 Google Scholar
6. Sipus, Z., H. Merkel, and P.-S. Kildal, "Green's functions for planar soft and hard surfaces derived by asymptotic boundary conditions," IEE Proc. - Microwave Antennas Propag., Vol. 144, No. 5, 321-328, October 1977.
doi:10.1049/ip-map:19971335 Google Scholar
7. Kildal, P.-S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. Antennas Propagat., Vol. 44, 1509-1520, Nov. 1996.
doi:10.1109/8.542076 Google Scholar
8. Kildal, P.-S., A. A. Kishk, and Z. Sipus, "Asymptotic boundary conditions for strip-loaded and corrugated surfaces," Microwave Opt. Technol. Lett., Vol. 14, 99-101, Feb. 1997.
doi:10.1002/(SICI)1098-2760(19970205)14:2<99::AID-MOP7>3.0.CO;2-G Google Scholar
9. Kishk, A. A. and P.-S. Kildal, "Asymptotic boundary conditions for strip-loaded scatterers applied to circular dielectric cylinders under oblique incidence," IEEE Trans. Antenna Propagat., Vol. 45, No. 2, 551-557, 1997. Google Scholar
10. Kishk, A. A. and P.-S. Kildal, "Asymptotic boundary conditions for strip-loaded surfaces of cylindrical structures with arbitrarily shaped cross-section," IEEE Antennas and Propagat. Int. Symposium, Vol. 2, 834-837, July 1999. Google Scholar
11. Kishk, A. A., "Analysis of hard surfaces of cylindrical structures of arbitrarily shaped crosssections using asymptotic boundary conditions," IEEE Trans. Antenna Propagat., Vol. 51, 1150-1156, June 2003.
doi:10.1109/TAP.2003.812270 Google Scholar
12. Engheta, N. and R. W. Ziolkowski, "A positive future for doublenegative metamaterials," IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 4, 1535-1556, April 2005.
doi:10.1109/TMTT.2005.845188 Google Scholar
13. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propagat., Vol. 51, No. 7, 1516-1529, July 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
14. Engheta, N., "Metamaterials with negative permittivity and permeability: Background, salient features, and new trends," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 187-190, 2003.
doi:10.1109/MWSYM.2003.1210912 Google Scholar
15. Shadrivov, I. V., A. A. Zharov, N. A. Zharov, and Y. S. Kivshar, "Nonlinear left-handed metamaterials," Radio Science, Vol. 40, RS3S90, 2005.
doi:10.1029/2004RS003191 Google Scholar
16. Jelinek, L., J. Machac, and J. Zehentner, "A magnetic metamaterial composed of randomly oriented SRRs," PIERS Online, Vol. 2, No. 6, 624-627, 2006.
doi:10.2529/PIERS060831080303 Google Scholar
17. Sihvola, A. H., P. Yla-Oijala, S. Jarvenpaa, and M. Taskinen, "Searching for electrostatic resonances in metamaterials using surface integral equation approach," PIERS Online, Vol. 3, No. 1, 118-121, 2007.
doi:10.2529/PIERS060906073935 Google Scholar
18. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media --- Media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, Vol. 31, No. 2, 129-133, Oct. 2001.
doi:10.1002/mop.1378 Google Scholar
19. Valanju, P. M., R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: Always positive and very inhomogeneous," Physical Review Letters, Vol. 88, No. 18, 012220, 2002.
doi:10.1103/PhysRevLett.88.187401 Google Scholar
20. Smith, D. R. and N. Kroll, "Negative refractive index in lefthanded material," Phys. Rev. Lett., Vol. 85, 2933, Oct. 2 2000.
doi:10.1103/PhysRevLett.85.2933 Google Scholar
21. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review Letter, Vol. 64, 056625, 2001. Google Scholar
22. Pendry, J. B., "Negative refraction," Contemporary Physics, Vol. 45, No. 3, 191-203, 2004.
doi:10.1080/00107510410001667434 Google Scholar
23. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of and," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
24. Zharov, A. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Physical Review Letters, Vol. 91, No. 3, 03740121-03740124, Mar. 2003.
doi:10.1103/PhysRevLett.91.037401 Google Scholar
25. Liang, L., B. Li, S.-H. Liu, and C.-H. Liang, "A study of using the double negative structure to enhance the gain of rectangular waveguide antenna arrays," Progress In Electromagnetics Research, Vol. 65, 275-286, 2006.
doi:10.2528/PIER06103102 Google Scholar
26. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Microwave Theory Tech., Vol. 52, 1159-1166, May 2004. Google Scholar
27. Mittra, R., K. Rajab, and M. T. Lanagan, "Size reduction of microstrip antennas using metamaterials," Proc. IEEE AP-S, July 2005. Google Scholar
28. Erentok, A. and R. W. Ziolkowski, "Development of epsilon negative (ENG) metamaterials for efficient electrically small antenna applications," Proc. IEEE AP-S, July 2005. Google Scholar
29. Pendry, J. B., "Negative refraction makes a perfect lens," Physics Review Letter, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
30. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wideangle absorption by the use of a metamaterial plate," PIER Letters, Vol. 1, 35-44, 2008.
doi:10.2528/PIERL07111809 Google Scholar
31. Henin, B. H., M. H. Al Sharkawy, and A. Z. Elsherbeni, "Scattering of obliquely incident plane wave by an array of parallel concentric metamaterials cylinders," Progress In Electromagnetics Research, Vol. 77, 285-307, 2007.
doi:10.2528/PIER07082102 Google Scholar
32. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906 Google Scholar
33. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803 Google Scholar
34. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
doi:10.2528/PIER03012901 Google Scholar
35. Shooshtrai, A. and A. R. Sebak, "Electromagnetic scattering by parallel metamaterial cylinders," Progress In Electromagnetics Research, Vol. 57, 165-177, 2006.
doi:10.2528/PIER05071103 Google Scholar
36. Henin, B. H., A. Z. Elsherbeni, and M. H. Al Sharkawy, "Oblique incidence plane wave scattering from an array of circular dielectric cylinders," Progress In Electromagnetics Researc, Vol. 68, 261-279, 2007.
doi:10.2528/PIER06083102 Google Scholar
37. Ragheb, H. A. and M. Hamid, "Scattering by N parallel conducting circular cylinders," Int. J. Electron., Vol. 59, 407-421, Jan. 1985.
doi:10.1080/00207218508920712 Google Scholar
38. Hamid, A. K. and M. I. Hussein, "Iterative solution to the electromagnetic plane wave scattering by two parallel conducting elliptic cylinders," Journal of Electromagnetic Waves and Applications, Vol. 17, 813-828, 2003.
doi:10.1163/156939303322503376 Google Scholar
39. Kim, C. S., "Scattering of an obliquely incident wave by a coated elliptical conducting cylinder," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 11, 1169-1186, 1991. Google Scholar
40. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104: 1-5, 2002. Google Scholar
41. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory," IEEE Trans. Antennas Propagat., Vol. 51, 2550-2557, October 2003.
doi:10.1109/TAP.2003.817565 Google Scholar
42. Lubkowski, G., R. Schuhmann, and T. Weiland, "Extraction of effective metamaterial parameters by parameter fitting of dispersive models," Microwave and Optical Technology Letters, Vol. 49, No. 2, Feb. 2007.
doi:10.1002/mop.22105 Google Scholar
43. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
44. Markos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Optics Express, Vol. 11, No. 7, April 7 2003. Google Scholar
45. Smith, D. R., D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Appl. Phys. Lett., Vol. 75, 1425-1427, 1999.
doi:10.1063/1.124714 Google Scholar
46. Tretyakov, S. A., I. S. Nefedov, C. R. Simovski, and S. I. Maslovski, "Advances in electromagnetics of complex media and metamaterials," NATO-ARW Proceedings, 2002. Google Scholar
47. Markos, P. and C. M. Soukoulis, "Transmission studies of the lefthanded materials," Phys. Rev. B, Vol. 65, 033401, 2002. Google Scholar
48. Bohren, C. and D. Huffmann, Absorption and Scattering of Light by Small Particles, John Wiley, 1983.
49. Jackson, J. D., Classical Electrodynamics, John Wiley, 1999.