Vol. 5
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-02-12
A Compact h -Plane Magic Tee Designed at W Band
By
Progress In Electromagnetics Research B, Vol. 5, 35-48, 2008
Abstract
Magic tee is a widely used component in microwave systems; the four arms of a conventional magic tee direct at four different directions, which occupy much space and give inconveniences to the assemblage of a system. In this paper, a waveguide narrow-wall slot directional coupler and an E-plane dielectric loaded waveguide phase shifter are used to make up of a magic tee with four arms in the same H-plane. The narrow-wall slot directional coupler is analyzed with mode matching method and optimized with simulated annealing method, and the dielectric loaded waveguide phase shifter is designed with edge based finite element method. Numerical results of the magic tee are presented, which show that the performance of the designed magic tee is good.
Citation
Zong-Xin Wang, Wen-Bin Dou, and Zhi-Lin Mei, "A Compact h -Plane Magic Tee Designed at W Band," Progress In Electromagnetics Research B, Vol. 5, 35-48, 2008.
doi:10.2528/PIERB08011706
References

1. Riabi, M. L., R. Thabet, and M. Belmeguenai, "Rigorous design and efficient optimizattion of quarter-wave transformers in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 68, 15-33, 2007.
doi:10.2528/PIER06072103

2. Huang, R. and D. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103

3. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd Ed., Cambridge University Press, 1995.

4. Jin, J. M., The Finite-element Method in Electromagnetics, John Wileys & Sons, Inc., 1993.

5. Hernandez-Lopez, M. A. and M. Quintillan-Gonzalez, "A finite element method code to analyse waveguide dispersion," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 397-408, 2007.
doi:10.1163/156939307779367396

6. Arndt, F., B. Koch, H.-J. Orlok, and N. Schroder, "Field theory design of rectangular waveguide broad-wall metal-insert slot couplers for millimeter-wave applications," IEEE Trans. on Microwave Theory and Techniques, Vol. 33, No. 2, 95-104, 1985.
doi:10.1109/TMTT.1985.1132956

7. Partzelt, H. and F. Arndt, "Double-plane steps in rectangular waveguides and their application for transformers, irises, and filters," IEEE Trans. on Microwave Theory and Techniques, Vol. 30, No. 5, 771-776, 1982.
doi:10.1109/TMTT.1982.1131135

8. Reed, J. and G. J. Wheeler, "A method of analysis of symmetrical four-port networks," IRE Trans. Microwave Theory Tech., Vol. 4, 246-252, 1956.
doi:10.1109/TMTT.1956.1125071

9. Uher, J., J. Bornemann, and U. Rosenberg, Waveguide Components for Antenna Feed Systems: Theory and CAD, Artech House Publishers, May 1 1993.

10. Park, J. K., D. H. Shin, J. N. Lee, and H. J. Eom, "A full-wave analysis of a coaxial waveguide slot bridge using the Fourier transform technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 143-158, 2006.
doi:10.1163/156939306775777198

11. Schmiedel, H. and F. Arndt, "Field theory design of rectangular waveguide multiple-slot narrow-wall couplers," IEEE Trans. on Microwave Theory and Techniques, Vol. 34, No. 7, 791-797, 1986.
doi:10.1109/TMTT.1986.1133442

12. Ritter, J. and F. Arndt, "Efficient FDTD/matrix-pencil method for the full-wave scattering parameter analysis of waveguiding structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 44, No. 12, 2450-2456, 1996.
doi:10.1109/22.554577