Vol. 5
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-02-28
Performance Analysis of a High Data Rate UWB-Dtr System in Dense Multipath Channels
By
Progress In Electromagnetics Research B, Vol. 5, 119-131, 2008
Abstract
In this paper, a high data rate Ultra-Wideband Differential Transmitted-Reference (UWB-DTR) system which is one of the best and simplest available TR scheme is analyzed over IEEE 802.15.3a Channel Model 1 (CM1). We show that these systems need equalization in high data rate mode of operation because in such a case harsh nonlinear inter symbol interference (ISI) exists and degrades performance severely. The performance of the DTR system in CM1 is derived both analytically and via simulations by taking into account noise, inter path/pulse interference (IPI), and ISI. Uniform approximation for ISI distribution is proposed for the first time which gives a closer approximation than Gaussian one. All simulation and analytical results are obtained for CM1 but generalization to other channel models is also possible.
Citation
Hassan Khani, and Paeiz Azmi, "Performance Analysis of a High Data Rate UWB-Dtr System in Dense Multipath Channels," Progress In Electromagnetics Research B, Vol. 5, 119-131, 2008.
doi:10.2528/PIERB08021003
References

1. Kolenchery, S. S., J. K. Townsend, and J. A. Freebersyser, "A novel impulse radio network for tactical military wireless communications," Proc. Military Comm. Conf., Vol. 2, 59-65, Oct. 1998.

2. Win, M. Z., X. Qiu, R. A. Scholtz, and V. O. K. Li, "ATM-based TH SSMA network for multimedia PCS," IEEE JSAC, Vol. 17, No. 5, 824-836, May 1999.

3. Aiello, G. R., G. D. Rogerson, R. A. Scholtz, and V. O. K. Li, "Ultrawideband wireless systems," IEEE Microwave Magazine, Vol. 4, No. 2, 36-47, Jun. 2003.
doi:10.1109/MMW.2003.1201597

4. Withington, P., H. Fluhler, and S. Nag, "Enhancing homeland security with advanced UWB sensors," IEEE Microwave Magazine, Vol. 4, No. 3, 51-58, Sep. 2003.
doi:10.1109/MMW.2003.1237477

5. Win, M. Z. and R. A. Scholtz, "Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications," IEEE Trans. Commun., Vol. 48, No. 4, 679-691, Apr. 2000.
doi:10.1109/26.843135

6. Chen, F. C. and W. C. Chew, "Time-domain ultra-wideband microwave imaging radar system," Journal of Electromagnetic Waves and Applications, Vol. 17, 313-331, 2003.
doi:10.1163/156939303322235842

7. El-Fishawy, N., M. Shokair, and W. Saad, "Proposed MAC protocol versus IEEE 802.15.3a for multimedia transmission over UWB networks," Progress In Electromagnetics Research B, Vol. 2, 189-206, 2008.
doi:10.2528/PIERB07111812

8. Lie, J. P., B. P. Ng, and C. M. See, "Multiple UWB emitters DOA estimation employing time hopping spread spectrum," Progress In Electromagnetics Research, Vol. 78, 83-101, 2008.
doi:10.2528/PIER07091303

9. Jeong, Y. S. and J.-H. Lee, "Estimation of time delay using conventional beam forming-based algorithm for UWB systems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2413-2420, 2007.
doi:10.1163/156939307783134281

10. Soliman, M. S., T. Morimoto, and Z.-I. Kawasaki, "Three-dimensional localization system for impulsive noise sources using ultra-wideband digital interferometer technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 515-530, 2006.
doi:10.1163/156939306776117027

11. Win, M. Z. and R. A. Scholtz, "On the energy capture of ultrawide bandwidth signals in dense multipath environments," IEEE Commun. Lett., Vol. 2, No. 9, 245-247, Sep. 1998.
doi:10.1109/4234.718491

12. Romme, J. and K. Witrisal, "Transmitted-reference UWB systems using weighted autocorre-lation receivers," IEEE Trans. on Microwave Theory and Techniques, Vol. 54, No. 4, 1754-1761, Apr. 2006.
doi:10.1109/TMTT.2006.872061

13. Siwiak, K. and D. McKeown, Ultra-Wideband Radio Technology, John Wiley & Sons, 2004.

14. Ramirez-Mireles, F., "On the performance of ultra wideband signals in gaussian noise and dense multipath," IEEE Trans. on Veh. Tech., Vol. 50, No. 4, 244-249, Jan. 2001.
doi:10.1109/25.917932

15. Taylor, J. D., Intruduction to Ultra-Wideband Systems, CRC Press, Ann Arbor, 1995.

16. Taylor, J. D., Ultra-Wideband Radar Technology, CRC Press, New York, 2001.

17. Chen, C.-H., C.-H. Liu, C.-C. Chiu, and T.-M. Hu, "Ultrawide band channel caculation by SBR/IMAG techniques for indoor communication," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 41-51, 2006.
doi:10.1163/156939306775777387

18. Liu, Y. J., Y. R. Zhang, and W. Cao, "A novel approach to the refraction propagation characterisitcs of UWB signal waveforms," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1939-1950, 2007.
doi:10.1163/156939307783152966

19. Liu, X. F., B. Z. Wang, S. Xiao, and J. H. Deng, "Performance of impulse radio UWB communications based on time reversal technique," Progress In Electromagnetics Research, Vol. 79, 401-413, 2008.
doi:10.2528/PIER07102205

20. Chao, Y. L. and R. A. Scholtz, "Optimal and suboptimal receivers for ultra-wideband transmitted reference systems," Proc. GLOBECOM03, Vol. 2, 759-763, Dec. 2003.

21. Xiao, S., J. Chen, F. Liu, and B. Z. Wang, "Spatial focusing characteristics of time reversal UWB pulse transmission with different antenna arrays," Progress In Electromagnetics Research B, Vol. 2, 223-232, 2008.
doi:10.2528/PIERB07112203

22. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, 1219-1230, 2007.

23. Xiao, S., J. Chen, B.-Z. Wang, and X.-F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultrawideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
doi:10.2528/PIER07082501

24. Pausini, M., G. J. M. Janssen, and K. Witrisal, "Performance enhancement of differential UWB autocorrelation receivers under ISI," IEEE JSAC, Vol. 24, No. 4, 815-821, Apr. 2006.

25. Witrisal, K., G. Leus, M. Pausini, and C. Krall, "Equivalent system model and equalization of differential impulse radio UWB systems," IEEE JSAC, Vol. 23, No. 9, 1851-1862, Sep. 2005.

26. Khani, H. and P. Azmi, "Performance analysis of TH-UWB radio systems using proper waveform design in the presence of narrow-band interference," Wiley European Transactions on Telecommunications-ETT, Vol. 17, 111-123, Feb. 2006.
doi:10.1002/ett.1043

27. Revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems, FIRST REPORT AND ORDER, Federal Communications Commission, Feb. 14 2002.

28. Zasowski, T., F. Althaus, and A. Wittneben, "An energy efficient transmitted-reference scheme for ultra wideband communications," Proc. of IEEE JointUWBST&IWUWBS, 146-150, 2004.

29. Franz, S. and U. Mitra, "Integration interval optimization and performance analysis for UWB transmitted reference systems," IEEE International Workshop on Ultra Wideband Systems Joint with Conference on Ultrawideband Systems and Technologies, Joint UWBST & IWUWBS, 26-30, May 2004.

30. Romme, J. and K. Witrisal, "Oversampled weighted autocorrelation receivers for transmitted-reference UWB systems," IEEE 61st VTC 2005-Spring, Vol. 2, 1375-1380, June 2005.

31. Pausini, M. and G. J. M. Janssen, "Analysis and comparison of autocorrelation receivers for IR-UWB signals based on differential detection," ICASSP, May 2004.

32. Choi, J. and W. Stark, "Performance of ultra-wideband communications with suboptimal receivers in multipath channels," IEEE JSAC, Vol. 20, No. 9, 1754-1766, Dec. 2002.

33. Quek, T. Q. S. and M. Z. Win, "Analysis of UWB transmitted-reference communication systems in dense multipath channels," IEEE JSAC, Vol. 23, No. 10, 1863-1874, Sep. 2005.

34. Quek, T. Q. S. and M. Z. Win, "Ultrawide bandwidth transmitted-reference signaling," IEEE ICC, Vol. 27, 3409-3413, Jun. 2004.