Vol. 5
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-03-21
Impedance Vibrator with Arbitrary Point of Excitation
By
Progress In Electromagnetics Research B, Vol. 5, 275-290, 2008
Abstract
The approximate analytical solution of the integral equation concerning the current in a thin straight vibrator with complex surface impedance has been obtained. The vibrator is located in unlimited space and is excited in an arbitrary point along its length. The calculations have been made and the plots of electrodynamic characteristics of the vibrator, depending of the value and the type of its surface impedance and the excitation point location, are represented. The comparative analysis between the calculated and the experimental data and also the results, obtained by the method of moments, are represented for perfectly conducting vibrators.
Citation
Mikhail Nesterenko, V. Katrich, Victor M. Dakhov, and Sergey L. Berdnik, "Impedance Vibrator with Arbitrary Point of Excitation," Progress In Electromagnetics Research B, Vol. 5, 275-290, 2008.
doi:10.2528/PIERB08022805
References

1. King, R. W. P., The Theory of Linear Antennas, Harv. Univ. Press, 1995.

2. King, R. W. P. and T. T. Wu, "The cylindrical antenna with arbitrary driving point," IEEE Trans. Antennas and Propagat., Vol. 13, 710-718, 1965.
doi:10.1109/TAP.1965.1138531

3. Harrington, R. F. and J. R. Mautz, "Straight wires with arbitrary excitation and loading," IEEE Trans. Antennas and Propagat., Vol. 15, 502-515, 1967.
doi:10.1109/TAP.1967.1138970

4. Kim, K.-C. and I. S. Kwon, "Beam tilting dipole antenna elements with forced resonance by reactance loading," IEICE Trans. Commun., Vol. E83-B, No. 1, 77-83, 2000.

5. Chen, H.-T., J.-X. Luo, and D.-K. Zhang, "An analytic formula of the current distribution for the VLF horizontal wire antenna above lossy half-space," PIER Letters, Vol. 1, 149-158, 2008.
doi:10.2528/PIERL07112904

6. King, R. W. P. and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas and Propagat., Vol. 14, 524-534, 1966.
doi:10.1109/TAP.1966.1138733

7. Taylor, C. D., "Cylindrical transmitting antenna: Tapered resistivity and multiple impedance loadings," IEEE Trans. Antennas and Propagat., Vol. 16, 176-179, 1968.
doi:10.1109/TAP.1968.1139146

8. Rao, B. L. J., J. E. Ferris, and W. E. Zimmerman, "Broadband characteristics of cylindrical antennas with exponentially tapered capacitive loading," IEEE Trans. Antennas and Propagat., Vol. 17, 145-151, 1969.
doi:10.1109/TAP.1969.1139408

9. Inagaki, N., O. Kukino, and T. Sekiguchi, "Integral equation analysis of cylindrical antennas characterized by arbitrary surface impedance," IEICE Trans. Commun., Vol. 55-B, 683-690, 1972.

10. Andersen, L. S., O. Breinbjerg, and J. T. Moore, "The standard impedance boundary condition model for coated conductors with edges: A numerical investigation of the accuracy for transverse magnetic polarization," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 4, 415-446, 1998.
doi:10.1163/156939398X00863

11. Galdi, V. and I. M. Pinto, "SDRA approach for higherorder impedance boundary conditions for complex multi-layer coatings on curved conducting bodies --- Abstract," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1629-1630, 1999.
doi:10.1163/156939399X00033

12. Ikiz, T., S. Koshikawa, K. Kobayashi, E. I. Veliev, and A. H. Serbest, "Solution of the plane wave diffraction problem by an impedance strip using a numerical-analytical method: E-polarized case," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 3, 315-340, 2001.
doi:10.1163/156939301X00481

13. Papakanellos, P. J. and C. N. Capsalis, "Numerical analysis of cylindrical dipole antennas using an auxiliary sources model," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 3, 389-407, 2003.
doi:10.1163/156939303767868900

14. Makinen, R. M., "An efficient surface-impedance boundary condition for thin wires of finite conductivity," IEEE Trans. Antennas and Propagat., Vol. 52, 3364-3372, 2004.
doi:10.1109/TAP.2004.836426

15. Nesterenko, M. V., "The electomagnetic wave radiation from a thin impedance dipole in a lossy homogeneous isotropic medium," Telecommunications and Radio Engineering, Vol. 61, 840-853, 2004.
doi:10.1615/TelecomRadEng.v61.i10.40

16. Arnold, M. D., "An efficient solution for scattering by a perfectly conducting strip grating," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 891-900, 2006.
doi:10.1163/156939306776149905

17. Collard, B., M. B. Fares, and B. Souny, "A new formulation for scattering by impedant 3D bodies," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1291-1298, 2006.
doi:10.1163/156939306779276785

18. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

19. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

20. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107

21. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
doi:10.2528/PIERB07121303

22. Khizhnyak, N. A., Integral Equations of Macroscopical Electrodynamics, Naukova Dumka, 1986 (in Russian).

23. Leontovich, M. A., "On the approximate boundary conditions for the electromagnetic field on surfaces of good conductive bodies," Investigations of Radiowave Propagation, 1948 (in Russian).

24. Nesterenko, M. V. and V. A. Katrich, "Thin vibrators with arbitrary surface impedance as a handset antennas," Proceedings of the 5th European Personal Mobile Communications Conference, 16-20, 2003.
doi:10.1049/cp:20030211

25. King, R. W. P., E. A. Aronson, and C. W. Harrison, "Determination of the admittance and effective length of cylindrical antennas," Radio Science, Vol. 1, No. 7, 835-850, 1966.

26. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, and S. L. Berdnik, "Analytical methods in theory of slot-hole coupling of electrodynamics volumes," Progress In Electromagnetics Research, Vol. 70, 79-174, 2007.
doi:10.2528/PIER06121203

27. King, R. W. P. and G. S. Smith, Antennas in Matter, MIT Press, 1981.

28. Fujimoto, K. and J. R. James, Mobile Antenna Systems Handbook, Artech House, 1994.