Vol. 9
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-09-02
Fractional Rectangular Cavity Resonator
By
Progress In Electromagnetics Research B, Vol. 9, 69-82, 2008
Abstract
Fractional curl operator has been used to derive solutions to the Maxwell equations for fractional rectangular cavity resonator. These solutions to the Maxwell equations may be regarded as fractional dual solutions. Behavior of field lines and surface current density in fractional cavity resonator have been investigated with respect to the fractional parameter. Fractional parameter describes the order of fractional curl operator.
Citation
Husnul Maab, and Qaisar Naqvi, "Fractional Rectangular Cavity Resonator," Progress In Electromagnetics Research B, Vol. 9, 69-82, 2008.
doi:10.2528/PIERB08070101
References

1. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

2. Engheta, N., "Fractional curl operator in electromagnetics," Microw. and Opt. Techn. Lett., Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

3. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801

4. Naqvi, Q. A., G. Murtaza, and A. A. Rizvi, "Fractional dual solutions to Maxwell equations in homogeneous chiral medium," Optics Communications, Vol. 178, 27-30, 2000.
doi:10.1016/S0030-4018(00)00651-9

5. Naqvi, Q. A. and M. Abbas, "Fractional duality and metamaterials with negative permittivity and permeability," Optics Communications, Vol. 227, No. 1-3, 143-146, 2003.

6. Naqvi, Q. A. and M. Abbas, "Complex and higher order fractional curl operator in electromagnetics,", Vol. 241, No. 4-6, 349-355, 2004.

7. Naqvi, S. A., Q. A. Naqvi, and A. Hussain, "Modelling of transmission through a chiral slab using fractional curl operator," Optics Communications, Vol. 266, No. 2, 404-406, 2006.
doi:10.1016/j.optcom.2006.05.030

8. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and fractional nonsymmetric transmission line," Progress In Electromagnetics Research, Vol. 59, 119-213, 2006.

9. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604

10. Hussain, A., Q. A. Naqvi, and M. Abbas, "Fractional duality and perfect electromagnetic conductor (PEMC)," Progress In Electromagnetics Research, Vol. 71, 85-94, 2007.
doi:10.2528/PIER07020702

11. Hussain, A. and Q. A. Naqvi, "Perfect electromagnetic conductor (PEMC) and fractional waveguide," Progress In Electromagnetics Research, Vol. 73, 61-69, 2007.
doi:10.2528/PIER07032401

12. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional chiro-waveguide," J. of Electromagn. Waves and Appl., Vol. 21, No. 8, 1119-1129, 2007.

13. Faryad, M. and Q. A. Naqvi, "Fractional rectangular waveguide," Progress In Electromagnetics Research, Vol. 75, 383-396, 2007.
doi:10.2528/PIER07052803

14. Maab, H. and Q. A. Naqvi, "Fractional surface waveguide," Progress In Electromagnetics Research C, Vol. 1, 199-209, 2008.
doi:10.2528/PIERC08020801

15. Veliev, E. I. and N. Engheta, "Fractional curl operator in reflection problems," 10th Int. Conf. on Mathematical Methods in Electromagnetic Theory, 1417, Ukraine, Sept. 2004.

16. Ivakhnychenko, M. V. and E. I. Veliev, "Fractional curl operator in radiation problems," Mathematical Methods in Electromagnetic Theory, MMET, Conference Proceedings, 231-233, 2004.

17. Ivakhnychenko, M. V. and E. I. Veliev, "Elementary fractional dipoles," Mathematical Methods in Electromagnetic Theory, MMET, Conference Proceedings, No. 1689830, 485-487, 2006.
doi:10.1109/MMET.2006.1689830

18. Ahmedov, T. M., M. V. Ivakhnychenko, and E. I. Veliev, "New generalized electromagnetic boundaries: Fractional operators approach," Mathematical Methods in Electromagnetic Theory, MMET, Conference Proceedings, Vol. 1689814, 434-436, 2006.
doi:10.1109/MMET.2006.1689814

19. Ivakhnychenko, M. V., E. I. Veliev, and T. M. Ahmedov, "Fractional operators approach in electromagnetic wave reflection problems," J. ofEle ctromagn. Waves and Appl., Vol. 21, No. 13, 1787-1802, 2007.

20. Ivakhnychenko, M. V., "Method of fractional operators in the problem of excitation of electric current thread above the plane boundary," Telecommunications and Radio Engineering, English Translation of Elektrosvyaz and Radiotekhnika, Vol. 67, No. 2, 97-108, 2008.
doi:10.1615/TelecomRadEng.v67.i2.10

21. Ivakhnychenko, M. V., "Polarization properties of fractional fields," Telecommunications and Radio Engineering, English Translation of Elektrosvyaz and Radiotekhnika, Vol. 67, No. 7, 567-581, 2008.
doi:10.1615/TelecomRadEng.v67.i7.10

22. Lakhtakia, A., "A representation theorem involving fractional derivatives for linear homogeneous chiral media," Microwave and Optical Technology Letters, Vol. 28, No. 6, 385-386, 2001.
doi:10.1002/1098-2760(20010320)28:6<385::AID-MOP1048>3.0.CO;2-L

23. Pozar, D. M., Microwave Engineering, Addison-Welsey, 1990.

24. Collin, R. E., Foundations for Microwave Engineering, IEEE Press, 2001.