Vol. 11
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-10-28
Evaluation of a Neural-Network-Based Adaptive Beamforming Scheme with Magnitude-Only Constraints
By
Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009
Abstract
In this paper, we present an adaptive beamforming scheme for smart antenna arrays in the presence of several desired and interfering signals, and additive white Gaussian noise. As compared with standard schemes, the proposed algorithm minimizes the noise and interference contributions, but enforces magnitude-only constraints, and exploits the array-factor phases in the desired-signal directions as further optimization parameters. The arising nonlinearly-constrained optimization problem is recast, via the Lagrange method, in the unconstrained optimization of a non-quadratic cost function, for which an iterative technique is proposed. The implementation via artificial neural networks is addressed, and results are compared with those obtained via standard schemes.
Citation
Giuseppe Castaldi, Vincenzo Galdi, and Giampiero Gerini, "Evaluation of a Neural-Network-Based Adaptive Beamforming Scheme with Magnitude-Only Constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303
References

1. Chryssomallis, M., "Smart antennas," IEEE Antennas Propagat. Mag., Vol. 42, 129-136, 2000.
doi:10.1109/74.848965

2. Bach-Andersen, J., H. Boche, A. Bourdoux, J. Fonollosa, T. Kaiser, and W. Utschick (eds.), Smart Antennas: State of Art, 2004.

3. Rabideau, D. J., "Clutter and jammer multipath cancellation in airborne adaptive radar," IEEE Trans. Aerospace Electron. Syst., Vol. 36, 565-583, 2000.
doi:10.1109/7.845243

4. Ray, J. K., M. E. Cannon, and P. Fenton, "Adaptive GPS code and carrier multipath mitigation using a multiantenna system," IEEE Trans. Aerospace Electron. Syst., Vol. 37, 183-195, 2001.
doi:10.1109/7.913677

5. Mouhamadou, M., P. Vaudon, and M. Rammal, "Smart antenna array patterns synthesis: Null steering and multi-user beamforming by phase control," Progress In Electromagnetics Research, Vol. 60, 95-106, 2006.
doi:10.2528/PIER05112801

6. Fakoukakis, F. E., S. G. Diamantis, A. P. Orfanides, and G. A. Kyriacou, "Development of an adaptive and a switched beam smart antenna system for wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 20, 399-408, 2006.
doi:10.1163/156939306775701722

7. Mukhopadhyay, M., B. K. Sarkar, and A. Chakraborty, "Augmentation of anti-jam GPS system using smart antenna with a simple DOA estimation algorithm," Progress In Electromagnetics Research, Vol. 67, 231-249, 2007.
doi:10.2528/PIER06090504

8. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904

9. Bresler, Y., V. U. Reddy, and T. Kailath, "Optimum beamforming for coherent signal and interferences," IEEE Trans. Acoust. Speech Signal Process., Vol. 36, 833-843, 1988.
doi:10.1109/29.1594

10. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

11. Roy, R. and T. Kailath, "ESPRIT — Estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acoust. Speech Signal Process., Vol. 37, 984-995, 1989.
doi:10.1109/29.32276

12. Haykin, S., Neural Networks, Mac-Millan, 1994.

13. Rayas-Sanchez, J. E., "EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Trans. Microwave Theory Tech., Vol. 52, 420-435, 2004.
doi:10.1109/TMTT.2003.820897

14. Ayestaran, R. G., F. Las-Heras, and J. A. Martinez, "Non uniform-antenna array synthesis using neural networks," Journal of Electromagnetic Waves and Applications, Vol. 21, 1001-1011, 2007.

15. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240

16. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "Neural network-based adaptive beamforming for one-and two-dimensional antenna arrays," IEEE Trans. Antennas Propagat., Vol. 46, 1891-1893, 1998.
doi:10.1109/8.743843

17. El Zooghby, A. H., C. G. Christodoulou, and M. Georgiopoulos, "A neural-network-based linearly constrained minimum variance beamformer," Microwave Opt. Technol. Lett., Vol. 21, 451-455, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<451::AID-MOP15>3.0.CO;2-M

18. Fletcher, R., Practical Methods of Optimization, 1990.

19. Haupt, R. L. and D. H. Werner, Genetic Algorithms in Electromagnetics, Wiley-IEEE Press, 2007.

20. Park, J. and I. W. Sandberg, "Universal approximation using radial basis function networks," Neural Comput, Vol. 3, 246-257, 1991.
doi:10.1162/neco.1991.3.2.246

21. Chen, S., C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Networks, Vol. 2, 302-309, 1991.
doi:10.1109/72.80341

22. Higham, D. J. and N. J. Higham, MATLAB Guide, SIAM, 2005.

23. Zhang, M., S. Xu, and J. Fulcher, "Neuron-adaptive higher order neural-network models for automated financial data modeling," IEEE Trans. Neural Networks, Vol. 13, 188-204, 2002.
doi:10.1109/72.977302

24. Rastko, R. and F. L. Lewis, "Neural-network approximation of piecewise continuous functions: Application to friction compensation," IEEE Trans. Neural Networks, Vol. 13, 745-751, 2002.
doi:10.1109/TNN.2002.1000141