Vol. 11
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-11-20
Diffraction of Plane Waves by a Slit in an Infinite Soft-Hard Plane
By
Progress In Electromagnetics Research B, Vol. 11, 103-131, 2009
Abstract
We have studied the problem of diffraction of plane waves by a finite slit in an infinitely long soft-hard plane. Analysis is based on the Fourier transform, the Wiener-Hopf technique and the method of steepest descent. The boundary value problem is reduced to a matrix Wiener-Hopf equation which is solved by using the factorization of the kernel matrix. The diffracted field, calculated in the far-field approximation, is shown to be the sum of the fields (separated and interaction fields) produced by the two edges of the slit. Some graphs showing the effects of slit width on the diffracted field produced by two edges of the slit are also plotted.
Citation
Muhammad Ayub, Amer Bilal Mann, Muhammad Ramzan, and Mazhar Hussain Tiwana, "Diffraction of Plane Waves by a Slit in an Infinite Soft-Hard Plane," Progress In Electromagnetics Research B, Vol. 11, 103-131, 2009.
doi:10.2528/PIERB08101803
References

1. Rawlins, A. D., "The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane," Proc. Roy. Soc. London, Ser. A, Vol. 346, 469-484, 1975.
doi:10.1098/rspa.1975.0186

2. Buyukaksoy, A., "A note on the plane wave diffraction by a soft/hard half-plane," ZAMM, Vol. 75, No. 2, 162-164, 1995.

3. Hamid, M. A. K., A. Mohsen, and W. M. Boerner, "Diffraction by a slit in a thick conducting screen," J. Appl. Physics Communications, 3882-3883, 1969.
doi:10.1063/1.1658302

4. Keller, J. B., "Diffraction by an aperture," J. Appl. Physics, Vol. 28, No. 4, 426-444, 1957.
doi:10.1063/1.1722767

5. Karp, S. N. and A. Russek, "Diffraction by a wide slit," J. Appl. Physics, Vol. 27, No. 8, 886-894, 1956.
doi:10.1063/1.1722509

6. Levine, H., "Diffraction by an infinite slit," J. Appl. Physics, Vol. 30, No. 11, 1673-1682, 1959.
doi:10.1063/1.1735035

7. Birbir, F. and A. Buyukaksoy, "Plane wave diffraction by a wide slit in a thick impedance screen," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 6, 803-826, 1996.
doi:10.1163/156939396X00793

8. Morse, P. M. and P. J. Rubenstein, "The diffraction of waves by ribbons and slits," Phys. Rev., Vol. 54, 895-898, 1938.
doi:10.1103/PhysRev.54.895

9. Asghar, S., T. Hayat, and J. G. Haris, "Diffraction by a slit in an infinite porous barrier," Wave Motion, Vol. 33, 25-40, 2001.
doi:10.1016/S0165-2125(00)00061-5

10. Hayat, T., S. Asghar, and K. Hutter, "Scattering from a slit in a biisotropic medium," Can. J. Phys., Vol. 81, 1193-1204, 2003.
doi:10.1139/p03-093

11. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a two dimensional perfect electromagnetic conductor (PEMC) strip and PEMC strip grating simulated by circular cylinders," Opt. Commun., Vol. 281, 4211-4218, 2008.
doi:10.1016/j.optcom.2008.05.022

12. Ayub, M., M. Ramzan, and A. B. Mann, "A note on spherical electromagnetic wave diffraction by a perfectly conducting strip in a homogeneous bi-isotropic medium," Progress In Electromagnetics Research, Vol. 85, 169-194, 2008.

13. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402

14. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of plane waves by two parallel slits in an infinitely long impedance plane using the method of Kobayashi potentials," Progress In Electromagnetics Research, Vol. 63, 107-123, 2006.
doi:10.2528/PIER06042601

15. Naveed, M. and Q. A. Naqvi, "Diffraction of EM plane wave by a slit in an impedance plane using Maliuzhinetz function," Progress In Electromagnetics Research B, Vol. 5, 265-273, 2008.
doi:10.2528/PIERB08021402

16. Ayub, M., A. B. Mann, and M. Ahmad, "Line source and point source scattering of acoustic waves by the junction of transmissive and soft-hard half planes," J. Math. Anal. Appl., Vol. 346, No. 1, 280-295, 2008.
doi:10.1016/j.jmaa.2008.04.069

17. Senior, T. B. A. and E. Topaskal, "Diffraction by an anisotropic impedance half plane-reviewed solution," Progress In Electromagnetics Research, Vol. 53, 1-19, 2005.
doi:10.2528/PIER04061702

18. Liang, C. H., Z. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," Progress In Electromagnetics Research B, Vol. 1, 253-268, 2008.
doi:10.2528/PIERB07102902

19. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 75, 215-240, 2007.
doi:10.2528/PIER07031602

20. Ghaffar, A., A. Hussain, and Q. A. Naqvi, "Radiation characteristics of an inhomogeneous slab," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2, 301-312, 2008.
doi:10.1163/156939308784160695

21. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Focal region fields of three dimensional Gregorian system," Optics Communications, Vol. 281, 1343-1353, 2008.
doi:10.1016/j.optcom.2007.11.011

22. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano-convex lense," Progress In Electromagnetics Research, Vol. 83, 25-24, 2007.

23. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half space," Progress In Electromagnetics Research, Vol. 78, 2538-2548, 2008.

24. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from paralell perfect electromagnetic conductor cylinders of circular cross-section using iterative procedure," Journal of Electromagnetic Waves and Applications, Vol. 22, 987-1003, 2008.
doi:10.1163/156939308784150209

25. Hurd, R. A., "A note on the solvability of simultaneous Wiener-Hopf equations," Can. J. Phys., Vol. 57, 402-403, 1979.

26. Rawlins, A. D., "The solution of mixed boundary value problem in the theory of diffraction," J. Engng. Mathematics, Vol. 18, 37-62, 1984.

27. Rawlins, A. D. and W. E. Williams, "Matrix Wiener-Hopf factorization," Quart. J. Mech. Appl. Math., Vol. 34, 1-8, 1981.
doi:10.1093/qjmam/34.1.1

28. Daniele, V. G., "On the factorization of Wiener-Hopf matrices in problems solvable with Hurd's method," IEEE Trans. on Antennas Propagat., Vol. 26, 614-616, 1978.
doi:10.1109/TAP.1978.1141895

29. Kharapkov, A. A., "Certain cases of the elastic equilibrium of an infinite wedge with a non-symmetric notch at the vortex, subjected to concentrated forces," Prikl. Math. Mekh., Vol. 35, 1879-1885, 1971.

30. Buyukaksoy, A. and A. H. Serbest, "Matrix Wiener-Hopf factorization methods and applications to some diffraction problems," Analytical and Numerical Techniques in Electromagnetic Wave Theory, Chap. 6., Hashimoto, Idemen, Tretyakov (eds.), Science House, Tokyo, Japan.

31. Noble, B., Methods Based on the Wiener-Hopf Technique, Pergamon, London, 1958.

32. Jones, D. S., "Diffraction by a waveguide of finite length," Proc. Camb. Phil. Soc., Vol. 48, 118-134, 1952.
doi:10.1017/S0305004100027432