1. Bandelier, B., C. Daveau, P. Haghi Ashtiani, A. Rais, and F. Rioux-Damidau, "Use of stream functions for the computation of currents in thin circuits determination of the impedances," IEEE Transactions on Magnetics, Vol. 36, No. 4, 760-764, 2000.
doi:10.1109/20.877558 Google Scholar
2. Zacharopoulos, A., S. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, "3D shape reconstruction in optical tomography using spherical harmonics and BEM," PIERS Online, Vol. 2, No. 1, 48-52, 2006. Google Scholar
3. Ruan, B. and Y. Wang, "New topography inversion using EM field," Progress In Electromagnetics Research, Vol. 1, No. 1, 79-83, 2005. Google Scholar
4. Peeren, G. N., "Stream function approach for determining optimal surface currents," Journal of Computational Physics, Vol. 191, No. 1, 305-321, 2003.
doi:10.1016/S0021-9991(03)00320-6 Google Scholar
5. Turner, R. and Gradient coil design: A review of methods, "Magn. Reson. Imaging,", Vol. 11, 903-920, 1993. Google Scholar
6. Li, X., D. Xie, and J. Wang, "A novel target field method for designing uniplanar self-shield gradient coils of fully open MRI device," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1635-1644, 2007. Google Scholar
7. Hong, L. and D. Zu, "Shimming permanent magnet of MRI scanner," Progress In Electromagnetics Research Symposium, Vol. 3, No. 6, 859-864, 2007.
8. Pissanetzky, S., "Minimum energy MRI gradient coil of general geometry," Measurement of Science Technology, Vol. 3, 667-673, 1992.
doi:10.1088/0957-0233/3/7/007 Google Scholar
9. Lemdiasov, R. A. and R. Ludwig, "A stream function method for gradient coil design," Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, Vol. 26B, No. 1, 67-80, 2005.
doi:10.1002/cmr.b.20040 Google Scholar
10. Marin, L., H. Power, R. W. Bowtell, C. Cobos Sanchez, A. A. Becker, P. Glover, and I. A. Jones, "Boundary element method for an inverse problem in magnetic resonance imaging gradient coils," Computer Methods in Engineering & Sciences, 2007. Google Scholar
11. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1962.
12. Pars, F. and J. Canas, Boundary Element Method: Fundamentals and Applications, Oxford Science Publications, 1997.
13. Brebbia, C. A., J. F. C. Telles, and L. C. Wrobel, Boundary Element Techniques, Springer-Verlag, 1984.
14. Holland, R., "Finite-difference solution of Maxwell's equations in generalized nonorthogonal coordinates ," IEEE Trans. Nucl. Sci., Vol. NS-30, 4586-4591, 1983. Google Scholar
15. Pozrikidis, C., A Practical Guide to Boundary-element Methods with the Software Library BEMLIB , Chapman & Hall/CRC, 2002.
16. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization , Academic Press, London, 1981.
17. Tiknonov, A. N. and V. Y. Arsenin, Methods for Solving Ill-posed Problems, Nauka, Moscow, 1986.
18. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data ," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003 Google Scholar
19. Brideson, M. A., L. K. Forbes, and S. Crozier, "Determining complicated winding patterns for shim coils using stream functions and the target-field method," Concepts in Magnetic Resonance, Vol. 14, No. 1, 9-18, 2002.
doi:10.1002/cmr.10000 Google Scholar
20. Qi, F., X. Tang, Z. Jin, L. Wang, D. Zu, and W. Wang, "A new target ¯eld method for optimizing longitudinal gradient coils' property ," Progress In Electromagnetics Research Symposium, Vol. 3, No. 6, 865-869, 2007.
21. Eibert, T. F. and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1499-1502, 1995.
doi:10.1109/8.475946 Google Scholar
22. Marin, L., H. Power, R. W. Bowtell, C. Cobos Sanchez, A. A. Becker, P. Glover, and I. A. Jones, "Numerical solution for an inverse MRI problem using a regularized boundary element method," (Special Issue) Engineering Analysis with Boundary Elements, 2007. Google Scholar
23. Kamon, M., M. J. Tsuk, and J. K. White, "Fasthenry: A multipole-accelerated 3-D inductance extraction program," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 1750-1758, 1994.
doi:10.1109/22.310584 Google Scholar