Vol. 21
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-05-28
Characteristics of Electromagnetic Wave Propagation through a Magnetised Plasma Slab with Linearly Varying Electron Density
By
Progress In Electromagnetics Research B, Vol. 21, 385-398, 2010
Abstract
Characteristics of electromagnetic wave propagation through a magnetized plasma slab with linear electron density profile is analysed. In the numerical analysis, cold, weakly ionized, collisional and steady state plasma layer is divided into sufficiently thin, adjacent subslabs, in each of which plasma parameters are constant. Reflection and transmission coe±cients are calculated for discretised plasma by considering electron density profile with positive and negative slopes. Wideband absorbtion characteristic is obtained with high collision frequency and high electron density combination in linearly decreasing profile as well as wideband transmission characteristic is obtained for low collision frequency and low electron density combination in linearly increasing profile of finite length. The general results show that in steady state, plasma layer behaves as a frequency selective medium satisfying the major requirements of current shielding applications as the function of plasma parameters and the strength of external magnetic field excitation. Proposed plasma layer can be used in current shielding and stealth applications as a matching layer between the surface and the incident electromagnetic wave.
Citation
Çiğdem Seçkin Gürel, and Emrah Öncü, "Characteristics of Electromagnetic Wave Propagation through a Magnetised Plasma Slab with Linearly Varying Electron Density," Progress In Electromagnetics Research B, Vol. 21, 385-398, 2010.
doi:10.2528/PIERB10042205
References

1. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, New York, 1970.

2. Heald, M. A. and C. B. Wharton, Plasma Diagnostics with Microwaves, Krieger, New York, 1978.

3. Vidmar, R. J., "On the use of atmospheric plasmas as electromagnetic reflectors as electromagnetic reflectors and absorbers," IEEE Trans. Plasma Sci., Vol. 18, 733-741, 1990.
doi:10.1109/27.57528

4. Laroussi, M. and J. R. Roth, "Numerical calculation of the reflection, absorbtion, and transmission of microwaves by a nonuniform plasma slab ," IEEE Trans. Plasma Sci., Vol. 21, 366-372, 1993.
doi:10.1109/27.234562

5. Laroussi, M., "Interaction of microwaves with atmospheric pressure plasmas," Int. J. Infrared Millimeter Waves, Vol. 16, 2069-2083, 1995.
doi:10.1007/BF02073410

6. Hu, B. J., G. Wei, and S. L. Lai, "SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Trans. Plasma Sci., Vol. 29, 1131-1135, 1999.

7. Shi, J., Y. Gao, J. Wang, Z. Yuan, and Y. Ling, "Electromagnetic reflection of conductive plane covered with magnetized inhomogenous plasma," Int. J. Infrared Millimeter Waves, Vol. 22, 1167-1175, 2001.
doi:10.1023/A:1015063115375

8. Tang, D. L., A. P. Sun, X. M. Qiu, and K. Chu, "Interaction of electromagnetic waves with a magnetized nonuniform plasma slab," IEEE Trans. Plasma Sci., Vol. 31, No. 3, 2003.
doi:10.1109/TPS.2003.811648

9. Haifeng, Z., S. Fugio, and W. Long, "Interaction of plasmas with microwaves," Plasma Science and Tech., Vol. 5, 1773-1778, 2003.
doi:10.1088/1009-0630/5/3/003

10. Bin, G. and X. G. Wang, "Power absorption of high frequency electromagnetic waves in a partially ionized plasma layer in atmosphere conditions," Plasma Science and Tech., Vol. 7, 2645-2648, 2005.
doi:10.1088/1009-0630/7/1/010

11. Jin, F., H. Tong, Z. Shi, D. Tang, and P. K. Chu, "Effects of external magnetic field on propagation of electromagnetic wave in uniform magnetized plasma slabs," Computer Physics Communication, Vol. 175, 545-552, 2006.
doi:10.1016/j.cpc.2006.06.010

12. Soliman, E. A., A. Helaly, and A. A. Megahed, "Propagation of electromagnetic waves in planar bounded plasma region," Progress In Electromagnetics Research, Vol. 67, 25-37, 2007.
doi:10.2528/PIER06071102

13. Zhang, J. and Z. Q. Liu, "Electromagnetic reflection from conductive plate coated with nonuniform plasma," Int. J. Infrared Millimeter Waves, Vol. 28, 71-78, 2007.
doi:10.1007/s10762-006-9176-6

14. Liu, M., X. Hu, Z. Jiang, S. Zhang, C. Lan, and Y. Pan, "Reflection of a wave from a thin plasma layer attached to a metal plate by finite-difference time-domain analysis ," Plasma Sources Sci. Technol., Vol. 16, 614-618, 2007.
doi:10.1088/0963-0252/16/3/022

15. Zobdeh, P., R. Sadighi-Bonabi, H. Afarideh, E. Yazdani, and R. Rezaei Nasirabad, "Using the steepened plasma profile and wave breaking threshold in laser-plasma interaction," Contributions to Plasma Phys., Vol. 48, 555-560, 2008.
doi:10.1002/ctpp.200810088

16. Gurel, C. S. and E. Oncu, "Frequency selective characteristics of a plasma layer with sinusoidally varying electron density profile," Int. J. Infrared Millimeter Waves, Vol. 30, 589-597, 2009.

17. Gurel, C. S. and E. Oncu, "Interaction of electromagnetic wave and plasma slab with partially linear and sinusoidal electron density profile ," Progress In Electromagnetics Research Letters, Vol. 12, 171-181, 2009.
doi:10.2528/PIERL09061707

18. Mirzaie, M., B. Shokri, and A. A. Rukhadze, "The reflection of an electromagnetic wave from the self-produced plasma," Physics of Plasmas, Vol. 1, No. 7, 012104-012104-6, 2010.
doi:10.1063/1.3292654

19. Gradov, O. M. and L. Stenflo, "On the parametric transparency of a magnetized plasma slab," Physics Letters, Vol. 83A, No. 6, 257-258, 1981.

20. Gradov, O. M. and L. Stenflo, "Anomalous transmission of electromagnetic energy through a plasma slab," Physica Scripta, Vol. 25, No. 631, 1982.

21. Kim, H. C. and J. P. Verboncoeur, "Reflection, absorption and transmission of TE electromagnetic waves propagation in a nonuniform plasma slab ," Computer Physics Communications, Vol. 177, 118-121, 2007.
doi:10.1016/j.cpc.2007.02.056

22. Huang, H., Y. Fan, B. Wu, F. Kong, and J. A. Kong, "Surface modes at the interfaces between isotropic media and uniaxial plasma ," Progress In Electromagnetics Research, Vol. 76, 1-14, 2007.
doi:10.2528/PIER07062005

23. Ma, L. X., H. Zhang, and C. X. Zhang, "Analysis on the reflection characteristics of electromagnetic wave incidence in closed non-magnetised plasma," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2285-2296, 2008.
doi:10.1163/156939308787543877

24. Yang, H., "Exponential FDTD for plasma dispersive medium," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1165-1172, 2008.
doi:10.1163/156939308784158913

25. Gao, H. M. and P. T. Fa, "Reflection of electromagnetic waves by a nonuniform plasma layer covering a metal surface," Chinese Physics Letters, Vol. 25, 2562-2565, 2008.

26. Sternberg, N. and A. I. Smolyakov, "Resonant transparency of a three-layer structure containing the dense plasma region," Progress In Electromagnetics Research, Vol. 99, 37-52, 2009.
doi:10.2528/PIER09091708

27. Sternberg, N. and A. I. Smolyakov, "Resonant transparency of resonant transparency of a three-layer structure containing the dense plasma region," Progress In Electromagnetics Research, Vol. 99, 37-52, 2009.
doi:10.2528/PIER09091708

28. Sternberg, N. and A. I. Smolyakov, "Resonant transmission of electromagnetic waves in multilayer dense-plasma structures," IEEE Transactions on Plasma Science, Vol. 37, Part 2, 1251-1260, 2009.

29. Ma, L.-X., H. Zhang, H.-X. Zheng, and C.-X. Zhang, "Shift-operator FDTD method for anisotropic plasma in Kdb coordinates system," Progress In Electromagnetics Research M.

30. Ma, L.-X., H. Zhang, Z. Li, and C.-X. Zhang, "Analysis on the stealth characteristic of two dimensional cylinder plasma envelopes," Progress In Electromagnetics Research Letters, Vol. 13, 83-92, 2010.
doi:10.2528/PIERL09100903

31. Balanis, C. A., Advanced Electromagnetic Engineering, John Wiley and Sons, New York, 1989.