Vol. 26
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-11-01
Realistic Model of Dispersive Soils Using PLRC-FDTD with Applications to GPR Systems
By
Progress In Electromagnetics Research B, Vol. 26, 335-359, 2010
Abstract
A realistic model of ground soil is developed for the electromagnetic simulation of Ground Penetrating Radar (GPR) systems. A three dimensional Finite Difference Time Domain (FDTD) algorithm is formulated to model dispersive media using N-term Debye permittivity function with static conductivity. The formulation of the algorithm is based on the concept of the Piecewise Linear Recursive Convolution (PLRC) in order to simulate the dispersion properties of soil as a two-term Debye medium. This approach of ground modeling enhances the accuracy and reliability of results obtained for GPR problems. The developed algorithm is validated when simulating practical GPR Systems used to detect different objects buried in Puerto-Rico and San Antonio clay loams. The proposed algorithm is employed to compare the impact of using two-term Debye model to simulate real soil on the coupling coefficient between transmitting and receiving antennas due to the absence and presence of buried targets to that of using non-dispersive soil model. The effect of soil moisture content on the performance of GPR system in detecting buried objects such as metallic and plastic pipes is investigated.
Citation
Ghada Atteia, and Khalid Fawzy Ahmed Hussein, "Realistic Model of Dispersive Soils Using PLRC-FDTD with Applications to GPR Systems," Progress In Electromagnetics Research B, Vol. 26, 335-359, 2010.
doi:10.2528/PIERB10083102
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

2. Bourgeois, J. M. and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, Vol. 34, 36-44, Jan. 1996.
doi:10.1109/36.481890

3. Gurel, L. and U. Oguz, "Simulations of ground penetrating radars over lossy and heterogeneous grounds," IEEE Trans. Geosci. Remote Sensing, Vol. 39, 1190-1197, Jun. 2001.
doi:10.1109/36.927440

4. Montoya, T. P. and G. S. Smith, "Landmine detection using a ground-penetrating radar based on resistively loaded Vee dipoles," IEEE Trans. Antennas Propagat., Vol. 47, 1795-1806, Dec. 1999.
doi:10.1109/8.817655

5. Nishioka, Y., O. Maeshima, T. Uno, and S. Adachi, "FDTD analysis of resistor-loaded bow-tie antennas covered with ferrite-coated conducting cavity for subsurface radar," IEEE Tarns. Antennas Propagat., Vol. 47, 970-997, Jun. 1999.
doi:10.1109/8.777119

6. Young, J. L., "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Trans. Antennas Propagat., Vol. 43, 422-426, 1995.
doi:10.1109/8.376042

7. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. Antennas Propagat., Vol. 40, 1223-1230, Oct. 992.
doi:10.1109/8.182455

8. Gandhi, O. P., B.-Q. Gao, and J.-Y. Chen, "A frequency-dependent ¯nite difference time-domain formulation for general dispersive media," IEEE Trans. Microwave Theory Technol., Vol. 41, 658-664, Apr. 1993.
doi:10.1109/22.231661

9. Kashiva, T., Y. Ohtomo, and I. Fukai, "A finite-difference time-domain formulation for transient propagation in dispersive media associated with Cole-Cole's circular arc law," Microwave. Opt. Technol. Lett., Vol. 3, No. 12, 416-419, 1990.
doi:10.1002/mop.4650031204

10. Joseph, R. M., S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Opt. Lett., Vol. 16, 1412-1414, 1991.
doi:10.1364/OL.16.001412

11. Luebbers, R. J., F. P. Huusberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, 1412-1414, Aug. 1990.

12. Luebbers, R. J. and F. P. Hunsberger, "FDTD for Nth-order dispersive media," IEEE Trans. Antennas Propagat., Vol. 40, 1297-1301, Nov. 1992.

13. Luebbers, R. J., F. P. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propagat., Vol. 39, 29-39, 1991.
doi:10.1109/8.64431

14. Sullivan, D. M., "A frequency-dependent FDTD method for biological applications," IEEE Trans. Microwave Theory Tech., Vol. 40, 532-539, Mar. 1992.
doi:10.1109/22.121729

15. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propagat., Vol. 44, 792-797, 1996.
doi:10.1109/8.509882

16. Weedon, W. H. and C. M. Rappaport, "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 401-410, Mar. 1997.
doi:10.1109/8.558655

17. Taflove, A., Computational Electromagnetics: The Finite-difference Time-domain Method, Artech House, Boston, MA, 2000.

18. Teixeira, F. L., W. C. Chew, M. Straka, M. L. Oristaglio, and T. Wang, "Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils," IEEE Trans. Geos. and Remot. Sensing, Vol. 36, No. 6, 1928-Nov. 1937, 1998.
doi:10.1109/36.729364

19. Lu, T., W. Cai, and P. Zhang, "Discontinuous galerkin time-domain method for GPR simulation in dispersive media," IEEE Trans. Geos. and Remot. Sensing, Vol. 43, No. 1, 72-80, Jan. 2005.
doi:10.1109/TGRS.2004.838350

20. Uduwawala, D., M. Norgren, P. Fuks, and A. W. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002