Vol. 26
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-11-02
Reliable Simulation-Driven Design Optimization of Microwave Structures Using Manifold Mapping
By
Progress In Electromagnetics Research B, Vol. 26, 361-382, 2010
Abstract
A computationally efficient surrogate-based framework for reliable simulation-driven design optimization of microwave structures is described. The key component of our algorithm is manifold mapping, a response correction technique that aligns the coarse model (computationally cheap representation of the structure under consideration) with the accurate but CPU-intensive (fine) model of the optimized device. The parameters of the manifold mapping surrogate are explicitly calculated based on the fine model data accumulated during the optimization process. Also, manifold mapping does not use any extractable parameters, which makes it easy to implement. Robustness and excellent convergence properties of the proposed algorithm are demonstrated through the design of several microwave devices including microstrip filters and a planar antenna.
Citation
Slawomir Koziel, and David Echeverría Ciaurri, "Reliable Simulation-Driven Design Optimization of Microwave Structures Using Manifold Mapping," Progress In Electromagnetics Research B, Vol. 26, 361-382, 2010.
doi:10.2528/PIERB10090202
References

1. Schantz, H., The Art and Science of Ultrawideband Antennas, Artech House, 2005.

2. Wu, K., "Substrate integrated circuits (SiCs) --- A new paradigm for future GHz and THz electronic and photonic systems," IEEE Circuits and Systems Society Newsletter, Vol. 3, No. 2, Apr. 2009.

3. Rizzoli, V., A. Costanzo, D. Masotti, and P. Spadoni, "Circuit-level nonlinear/electromagnetic co-simulation of an entire microwave link," IEEE MTT-S Int. Microwave Symp. Dig., 813-816, Long Beach, CA, Jun. 2005.

4. Shin, S. and S. Kanamaluru, "Diplexer design using EM and circuit simulation techniques," IEEE Microwave Magazine, Vol. 8, No. 2, 77-82, Apr. 2007.
doi:10.1109/MMW.2007.335532

5. Snyder, R. V., "Practical aspects of microwave filter development," IEEE Microwave Magazine, Vol. 8, No. 2, 42-54, Apr. 2007.
doi:10.1109/MMW.2007.335528

6. Bandler, J. W., Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, and J. Søndergaard, "Space mapping: The state of the art," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 337-361, Jan. 004.
doi:10.1109/TMTT.2003.820904

7. Ismail, M. A., D. Smith, A. Panariello, Y. Wang, and M. Yu, "EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 386-392, Jan. 2004.
doi:10.1109/TMTT.2003.820900

8. Wu, K.-L., Y.-J. Zhao, J. Wang, and M. K. K. Cheng, "An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 393-402, Jan. 2004.
doi:10.1109/TMTT.2003.820901

9. Rayas-Sánchez, J. E., F. Lara-Rojo, and E. Martínez-Guerrero, "A linear inverse space mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 3, 960-968, Mar. 2005.
doi:10.1109/TMTT.2004.842482

10. Koziel, S., J. W. Bandler, and K. Madsen, "A space mapping framework for engineering optimization: Theory and implementation," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3721-3730, Oct. 2006.
doi:10.1109/TMTT.2006.882894

11. Dorica, M. and D. D. Giannacopoulos, "Response surface space mapping for electromagnetic optimization," IEEE Trans. Magn., Vol. 42, No. 4, 1123-1126, Apr. 2006.
doi:10.1109/TMAG.2006.872018

12. Amari, S., C. LeDrew, and W. Menzel, "Space-mapping optimization of planar coupled-resonator microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 5, 2153-2159, May 2006.
doi:10.1109/TMTT.2006.872811

13. Crevecoeur, G., L. Dupre, and R. van de Walle, "Space mapping optimization of the magnetic circuit of electrical machines including local material degradation," IEEE Trans. Magn., Vol. 43, No. 6, 2609-2611, Jun. 2007.
doi:10.1109/TMAG.2007.893409

14. Pantoja, M. F., P. Meincke, and A. R. Bretones, "A hybrid genetic-algorithm space-mapping tool for the optimization of antennas," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 3, Part 1, 777-781, Mar. 2007.
doi:10.1109/TAP.2007.891556

15. Koziel, S., Q. S. Cheng, and J. W. Bandler, "Space mapping,", Vol. 9, No. 6, 105-122, Dec. 2008.

16. Crevecoeur, G., P. Sergeant, L. Dupre, and R. van de Walle, "Two-level response and parameter mapping optimization for magnetic shielding," IEEE Trans. Magn., Vol. 44, No. 2, 301-308, Feb. 2008.
doi:10.1109/TMAG.2007.911661

17. Sergeant, P., R. V. Sabariego, G. Crevecoeur, L. Dupre, and C. Geuzaine, "Analysis of perforated magnetic shields for electric power applications," IET Electric Power Applications, Vol. 3, No. 2, 123-132, Mar. 2009.
doi:10.1049/iet-epa:20080203

18. Rautio, J. C., "RF design closure --- Companion modeling and tuning methods," IEEE MTT IMS Workshop: Microwave Component Design Using Space Mapping Technology, San Francisco, CA, 2006.

19. Swanson, D. G. and R. J. Wenzel, "Fast analysis and optimization of combline filters using FEM," IEEE MTT-S IMS Digest, 1159-1162, Boston, MA, Jul. 2001.

20. Rautio, J. C., "EM-component-based design of planar circuits," IEEE Microwave Magazine, Vol. 8, No. 4, 79-90, Aug. 2007.
doi:10.1109/MMW.2007.383305

21. Swanson, D. and G. Macchiarella, "Microwave filter design by synthesis and optimization," IEEE Microwave Magazine, Vol. 8, No. 2, 55-69, Apr. 007.
doi:10.1109/MMW.2007.335529

22. Rautio, J. C., "Perfectly calibrated internal ports in EM analysis of planar circuits," IEEE MTT-S Int. Microwave Symp. Dig., 1373-1376, Atlanta, GA, Jun. 2008.

23. Koziel, S., J. W. Bandler, and K. Madsen, "Space mapping with adaptive response correction for microwave design optimization," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 2, 478-486, 2009.
doi:10.1109/TMTT.2008.2011243

24. Koziel, S., "Efficient optimization of microwave circuits using shape-preserving response prediction," IEEE MTT-S Int. Microwave Symp. Dig, 1569-1572, Boston, MA, 2009.

25. Koziel, S., J. W. Bandler, and K. Madsen, "Quality assessment of coarse models and surrogates for space mapping optimization," Optimization and Engineering, Vol. 9, No. 4, 375-391, 2008.
doi:10.1007/s11081-007-9032-0

26. Meng, J., S. Koziel, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, "Tuning space mapping: A novel technique for engineering design optimization," IEEE MTT-S Int. Microwave Symp. Dig., 991-994, Atlanta, GA, Jun. 2008.

27. Koziel, S., J. Meng, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, "Accelerated microwave design optimization with tuning space mapping," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 2, 383-394, Feb. 2009.
doi:10.1109/TMTT.2008.2011313

28. Cheng, Q. S., J. W. Bandler, and S. Koziel, "Space mapping design framework exploiting tuning elements," IEEE Trans. Microwave Theory and Tech., Vol. 58, No. 1, 136-144, 2010.
doi:10.1109/TMTT.2009.2036395

29. Echeverría, D. and P. W. Hemker, "Space mapping and defect correction," CMAM Int. Mathematical Journal Computational Methods in Applied Mathematics, Vol. 5, No. 2, 107-136, 2005.

30. Hemker, P. W. and D. Echeverría, "A trust-region strategy for manifold mapping optimization," JCP Journal of Computational Physics, Vol. 224, No. 1, 464-475, 2007.
doi:10.1016/j.jcp.2007.04.003

31. Alexandrov, N. M. and R. M. Lewis, "An overview of first-order model management for engineering optimization," Optimization Eng., Vol. 2, No. 4, 413-430, Dec. 2001.
doi:10.1023/A:1016042505922

32. Koziel, S., "Surrogate-based optimization of microwave structures using space mapping and kriging," European Microwave Conference, 1062-1065, Rome, Italy, Sep. 28--Oct. 2, 2009.

33. Beachkofski, B. and R. Grandhi, "Improved distributed hypercube sampling," American Institute of Aeronautics and Astronautics, 2002-1274, 2002.

34. Simpson, T. W., J. Peplinski, P. N. Koch, and J. K. Allen, "Metamodels for computer-based engineering design: Survey and recommendations," Engineering with Computers, Vol. 17, No. 2, 129-150, Jul. 2001.
doi:10.1007/PL00007198

35. Simpson, T. W., T. M. Maurey, J. J. Korte, and F. Mistree, "Kriging models for global approximation in simulation-based multidisciplinary design optimization," American Institute of Aeronautics and Astronautic, Vol. 39, No. 12, 2233-2241, Dec. 2001.

36. Yang, Y., S. M. Hu, and R. S. Chen, "A combination of FDTD and least-squares support vector machines for analysis of microwave integrated circuits," Microwave Opt. Technol. Lett., Vol. 44, No. 3, 296-299, Feb. 2005.
doi:10.1002/mop.20615

37. Meng, J. and L. Xia, "Support-vector regression model for millimeter wave transition," Int. J. Infrared and Milimeter Waves, Vol. 28, No. 5, 413-421, May 2007.
doi:10.1007/s10762-007-9212-1

38. Lin, Y. F., C. H. Chen, K. Y. Chen, H. M. Chen, and K. L. Wong, "A miniature dual-mode bandpass filter using Al2O3 substrate," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 8, 580-582, Aug. 2007.
doi:10.1109/LMWC.2007.901766

39. FEKO ®, , User's Manual, Suite 5.4, 2008, EM Software & Systems-S.A. (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South Africa.

40. Agilent ADS, , Version 2008, Agilent Technologies, 1400 Fountain-grove Parkway, Santa Rosa, CA 95403-1799, 2008.

41. Hsieh, M. Y. and S. M.Wang, "Compact and wideband microstrip bandstop filter," IEEE Microwave and Wireless Component Lett., Vol. 15, No. 7, 472-474, Jul. 2005.
doi:10.1109/LMWC.2005.851572

42. Sun, S. and L. Zhu, "Wideband microstrip ring resonator bandpass filters under multiple resonances," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 10, 2176-2182, Oct. 2007.

43. Spence, T. G. and D. H. Werner, "A novel miniature broadband/multiband antenna based on an end-loaded planar open-sleeve dipole," IEEE Trans. Antennas Propag., Vol. 54, No. 12, 3614-3620, Dec. 2006.
doi:10.1109/TAP.2006.886493

44. CST Microwave Studio, , Version 2009, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2009.

45. Lophaven, S. N., H. B. Nielsen, and J. Søndergaard, DACE: A Matlab kriging toolbox, Technical University of Denmark, 2002.

46. Echeverría, D. and P. W. Hemker, "Manifold mapping: A two-level optimization technique," Computing and Visualization in Science, No. 11, 193-206, 2008.
doi:10.1007/s00791-008-0096-y

47. Echeverría, D., "Two new variants of the manifold-mapping technique," COMPEL the International Journal for Computation and Mathematics in Electrical Engineering, Vol. 26, No. 2, 334-344, 2007.
doi:10.1108/03321640710727692

48. Conn, A. R., N. Gould, and P. L. Toint, Trust-region Methods, MPS/SIAM Series on Optimization, SIAM, 2007.

49. Kolda, T. G., R. M. Lewis, and V. Torczon, "Optimization by direct search: new perspectives on some classical and modern methods," SIAM Review, Vol. 45, No. 3, 385-482, 2003.
doi:10.1137/S003614450242889

50. MatlabTM, , Version 7.6, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, 2008.