1. Leonard, A., "Vortex methods for flow simulations," J. Comput. Phys., Vol. 37, 289-335, 1980.
doi:10.1016/0021-9991(80)90040-6 Google Scholar
2. Barnes, J. E. and P. Hut, "A hierarchical O(N logN) force calculation algorithm," Nature, Vol. 324, 446-449, 1986.
doi:10.1038/324446a0 Google Scholar
3. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., Vol. 73, 325-348, 1987.
doi:10.1016/0021-9991(87)90140-9 Google Scholar
4. Narumi, T., Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga, N. Futatsugi, R. Yanai, R. Himeno, S. Fujikawa, M. Ikei, and M. Taiji, "A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion sup35 with the specialpurpose computer system MDGRAPE-3," Proceedings of the SC06 (High Performance Computing, Networking, Storage and Analysis), CDROM, Tampa, USA, 2006. Google Scholar
5. Sugimoto, D., Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, and M. Umemura, "A special-purpose computer for gravitational many-body problems," Nature, Vol. 345, 33-35, 1990.
doi:10.1038/345033a0 Google Scholar
6. Sheel, T. K., K. Yasuoka, and S. Obi, "Fast vortex method calculation using a special-purpose computer," Computers and Fluids, Vol. 36, 1319-26, 2007.
doi:10.1016/j.compfluid.2007.01.006 Google Scholar
7. Makino, J., "Treecode with a special-purpose processor," Pub. of the Astronomical Society of Japan, Vol. 43, 621-638, 1991. Google Scholar
8. Chau, N. H., A. Kawai, and T. Ebisuzaki, "Implementation of fast multipole algorithm on special-purpose computer MDGRAPE-2," Proc. of the 6th World Multiconference on Systematics, Cybernetics and Informatics SCI 2002', Vol. XVI(2002), 477-481, USA, 2002. Google Scholar
9. Shankar, S., "A new mesh-free vortex method,", Ph.D. Thesis, The Florida State University, 1996. Google Scholar
10. Chatelain, P., "Contributions to the three-dimensional vortex element method and spinning bluff body flows,", Ph.D. Thesis, California Institute of Technology, 2005. Google Scholar
11. Winckelmans, G. S. and A. Leonard, "Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows," J. Comput. Phys., Vol. 109, 247-273, 1993.
doi:10.1006/jcph.1993.1216 Google Scholar
12. Sheel, T. K., R. Yokota, K. Yasuoka, and S. Obi, "The study of colliding vortex rings using a special-purpose computer and FMM," Transactions of the Japan Society for Computational Engineering and Science, Vol. 2008, 20080003, 2008. Google Scholar
13. Greengard, L. and V. Rokhlin, Rapid Evaluation of Potential Fields in Three Dimensions, in Vortex Methods, Edited by C. Anderson and C. Greengard, Number 1360 in Lecture Notes in Mathematics, 121-141, Springer-Verlag, Berlin, 1988.
14. Sanjay, V. and W. C. Chew, "Analysis and performance of a distributed memory multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 53, 2719-2727, 2005.
doi:10.1109/TAP.2005.851859 Google Scholar
15. Chew, W. C., J. M. Jin, and M. Eric, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House Publishers, 2001.
16. Cheng, H., L. Greengard, and V. Rokhlin, "A fast adaptive multipole algorithm in three dimensions," J. Comp. Phys, Vol. 155, 468-498, 1999.
doi:10.1006/jcph.1999.6355 Google Scholar
17. Gumerov, N. A. and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, 2004.
18. Xu, K., D. Z. Ding, Z. H. Fan, and R. S. Chen, "Multilevel fast multipole algorithm enhanced by GPU parallel technique for electromagnetic scattering problems," Microwave and Optical Technology Letters, Vol. 53, 502-507, 2010.
doi:10.1002/mop.24963 Google Scholar
19. Ravnik, J., S. Leopold, and Z. Zoran, "Fast single domainsubdomain BEM algorithm for 3D incompressible fluid flow and heat transfer," IJNME, Vol. 77, 1627-1645, 2009.
doi:10.1002/nme.2467 Google Scholar
20. Rui, P.-L., R.-S. Chen, Z.-W. Liu, and Y.-N. Gan, "Schwarz-Krylov subspace method for MLFMM analysis of electromagnetic wave scattering problems," Progress In Electromagnetics Research, Vol. 82, 51-63, 2008.
doi:10.2528/PIER08013003 Google Scholar
21. Taiji, M., T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and A. Konagaya, "Protein explorer: A petaflops special-purpose computer system for molecular dynamics simulations," Proc. Supercomputing, in CD-ROM, USA, 2003. Google Scholar
22. Anderson, C. R., "An implementation of the fast multipole method without multipoles," SIAM J. Sci. Stat. Comput., Vol. 13, 923-947, 1992.
doi:10.1137/0913055 Google Scholar
23. Makino, J., "Yet another fast multipole method without multipoles-pseudo-particle multipole method," J. Comput. Phys., Vol. 151, 910-920, 1999.
doi:10.1006/jcph.1999.6226 Google Scholar
24. Totsuka, Y. and S. Obi, "A validation of viscous dissipation models for fast vortex methods in simulations of decaying turbulence," Journal of Fluid Science and Technology, Vol. 2, No. 1, 248-257, 2007.
doi:10.1299/jfst.2.248 Google Scholar
25. Cottet, G.-H., B. Michaux, S. Ossia, and G. VanderLinden, "A comparison of spectral and vortex methods in three-dimensional incompressible flows," J. Comp. Phys., Vol. 175, 702-712, 2002.
doi:10.1006/jcph.2001.6963 Google Scholar
26. Fukuda, K. and K. Kamemoto, "Application of a redistribution model incorporated in a vortex method to turbulent flow analysis," The 3rd International Conference on Vortex Flows and Vortex Methods, 131-136, Japan, 2005. Google Scholar