Vol. 27
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-12-15
Design of Medical Radiometer Front-End for Improved Performance
By
Progress In Electromagnetics Research B, Vol. 27, 289-306, 2011
Abstract
We have investigated the possibility of building a singleband Dicke radiometer that is inexpensive, small-sized, stable, highly sensitive, and which consists of readily available microwave components. The selected frequency band is at 3.25--3.75 GHz which provides a reasonable compromise between spatial resolution (antenna size) and sensing depth for radiometry applications in lossy tissue. Foreseen applications of the instrument are non-invasive temperature monitoring for breast cancer detection and temperature monitoring during heating. We have found off-the-shelf microwave components that are sufficiently small (<5 mm×5 mm) and which offer satisfactory overall sensitivity. Two different Dicke radiometers have been realized: one is a conventional design with the Dicke switch at the front-end to select either the antenna or noise reference channels for amplification. The second design places a matched pair of low noise amplifiers in front of the Dicke switch to reduce system noise figure. Numerical simulations were performed to test the design conceptsbefore building prototype PCB front-end layouts of the radiometer. Both designs provide an overall power gain of approximately 50 dB over a 500 MHz bandwidth centered at 3.5 GHz. No stability problems were observed despite using triple-cascaded amplifier configurations to boost the thermal signals. The prototypes were tested for sensitivity after calibration in two different water baths. Experiments showed a superior sensitivity (36% higher) when implementing the low noise amplifier before the Dicke switch (close to the antenna) compared to the other design with the Dicke switch in front. Radiometer performance was also tested in a multilayered phantom during alternating heating and radiometric reading. Empirical tests showed that for the configuration with Dicke switch first, the switch had to be locked in the reference position during application of microwave heating to avoid damage to the active components (amplifiers and power meter). For the configuration with low noise amplifier up front, damage would occur to the active components of the radiometer if used in presence of the microwave heating antenna. Nevertheless, this design showed significantly improved sensitivity of measured temperatures and merits further investigation to determine methods of protecting the radiometer for amplifier first front ends.
Citation
Oystein Klemetsen, Yngve Birkelund, Svein K. Jacobsen, Paolo F. Maccarini, and Paul R. Stauffer, "Design of Medical Radiometer Front-End for Improved Performance," Progress In Electromagnetics Research B, Vol. 27, 289-306, 2011.
doi:10.2528/PIERB10101204
References

1. Mizushina, S., H. Ohba, K. Abe, S. Mizoshira, and T. Sugiura, "Recent trends in medical microwave radiometry," IEICE Trans. Commun., Vol. E78-B, No. 6, 789-798, 1995.

2. Bardati, F. and S. Iudicello, "Modeling the visibility of breast malignancy by a microwave radiometer," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 214-221, Jan. 2008.

3. Arunachalam, K., P. R. Stauffer, P. F. Maccarini, S. Jacobsen, and F. Sterzer, "Characterization of a digital microwave radiometry system for noninvasive thermometry using a temperaturecontrolled homogeneous test load," Physics in Medicine and Biology, Vol. 53, No. 14, 2008.

4. Arunachalam, K., P. F. Maccarini, V. D. Luca, F. Bardati, B. W. Snow, and P. R. Stauffer, "Modeling the detectability of vesicoureteral reflux using microwave radiometry," Physics in Medicine and Biology, Vol. 55, No. 18, 5417, 2010.

5. Aitken, G. J. M., "A new correlation radiometer," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 2, Mar. 1968.

6. Ulaby, F., R. Moore, and A. Fung, Microwave Remote Sensing Fundamentals and Radiometry, 1 Ed., Vol. 1, Artech House, 685 Canton Street, Norwood, MA 02062, USA, 1981.

7. Jacobsen, S. and O. Klemetsen, "Improved detectability in medical microwave radio-thermometers as obtained by active antennas," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2778-2785, Dec. 2008.

8. Edwards, M. and J. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 12, 2303-2311, Dec. 1992.

9. Allan, D. W., "Should classical variance be used as a basic measure in standards metrology?," IEEE Trans. Instrum. Measurements, Vol. 36, No. 2, 646-654, 1987.

10. Land, D. V., A. P. Levick, and J. W. Hand, "The use of the allan deviation for the measurement of the noise and drift performance of microwave radioemters," Measurement Science Technology, Vol. 18, No. 7, 1917-1928, 2007.

11. Barnes, J. A., A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunical, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, "Characterization of frequency stability," IEEE Trans. Instrum. Measurements, Vol. 20, No. 2, 105-120, 1971.

12. Bocquet, B., J. C. van de Velde, A. Mamouni, Y. Leroy, G. Giaux, J. Delannoy, and D. Delvalee, "Microwave radiometric imaging at 3 GHz for the exploration of breast tumors," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 6, 791-793, Jun. 1990.

13. Stauffer, P., F. Rossetto, M. Leencini, and G. Gentilli, "Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 5, 605-613, May 1998.

14. Maccarini, P., K. Arunachalam, T. Juang, V. De Luca, S. Rangarao, D. Neumann, C. Martins, O. Craciunescu, and P. Stauffer, "Shaping and resizing of multifed slot radiators used in conformal microwave antenna arrays for hyperthermia treatment of large superficial diseases,", 746-749, Sep. 2009.

15. Brelum, S. H., "A numerical study of planar elliptical antennas applied to ultrawideband (UWB) imaging of breast tissue,", LAP LAMBERT Academic Publishing, 2010.

16. Jacobsen, S. and P. Stauffer, "Nonparametric 1-D temperature restoration in lossy media using tikonov regularization in sparse radiometry data," IEEE Transactions on Biomedical Engineering, Vol. 50, No. 2, 178-188, Feb. 2003.