Vol. 30
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-05-18
Analytical Modeling of Quality Factor for Shell Type Microsphere Resonators
By
Progress In Electromagnetics Research B, Vol. 30, 293-311, 2011
Abstract
In this paper, we have proposed a shell type dielectric microsphere resonator in order to enhance its quality factor. In this work we have assumed that the radius of dielectric microsphere is 12 μm and that the interior metal layer radius is 11.5 μm. We have obtained analytic equations for Vector potentials, characteristic equation, quality factor, resonance frequency and resonance location of TE modes. We have plotted these characteristics by MATLAB software and compared them with the normal microsphere characteristics.
Citation
R. Talebi, Karim Abbasian, and Ali Rostami, "Analytical Modeling of Quality Factor for Shell Type Microsphere Resonators," Progress In Electromagnetics Research B, Vol. 30, 293-311, 2011.
doi:10.2528/PIERB11040303
References

1. Vernooy, D. W., V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Optics Letters, Vol. 23, No. 4, , 247-249, Feb. 1998.
doi:10.1364/OL.23.000247

2. Fan, X., M. C. Lonergan, Y. Zhang, and H. Wang, "Enhanced spontaneous emission from semiconductor nanocrystals embedded in whispering gallery optical microcavities," Phys. Rev. B, Vol. 64, 115310, 2001.
doi:10.1103/PhysRevB.64.115310

3. Fan, X., S. Lacey, P. Palingilins, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to fused silica microspheres: A quantum-dot microcavity with extremely high Q-factor," Optics Letters, Vol. 25, 1600, 2000.
doi:10.1364/OL.25.001600

4. Cai, M., G. Hunziker, and K. J. Vahala, "Fiber-optic add-drop device based on a silica microsphere-whispering gallery mode system," IEEE Photonics Technology Letters, Vol. 11, 686, 1999.

5. Rosenbeger, A. T. and J. P. Rezac, "Whispering-gallerymode evanescent-wave microsensor for trace-gasdetection," Proc. SPIE, Vol. 4265, 102-112, 2001.
doi:10.1117/12.427962

6. Arnold, S., M. Khoshisma, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Optics Letters, Vol. 28, 272, 2003.
doi:10.1364/OL.28.000272

7. Braginsky, V. B., M. L. Gorodetsky, and V. S. Ilchenko, "Quality-factor and nonlinear properties of optical whispering-gallery modes," Phys. Lett. A, Vol. 137, 393-397, 1989.
doi:10.1016/0375-9601(89)90912-2

8. Strutt, J. W., The Theory of Sound, Dover Press, New York, 1945.

9. Strutt, J., Theory of Sound (Teoriya Zvuka), Vol. 2, Gostekhizdat, Moscow, 1955.

10. Mie, G., "Beitrage zur optik truber Medien, speziell kolloidaler Metallosungen," Ann. Phys., Vol. 25, 377-445, 1908.
doi:10.1002/andp.19083300302

11. Kerker, M., "The Scattering of light and other electromagnetic radiation," Academic, 1969.

12. Spillane, S. M., Fiber-coupled ultra-high-Q microresonators for nonlinear and quantum optics, Doctor of Philosophy Thesis, May 2004.

13. Vernooy, D. W., V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the infrared," Optics Letters, Vol. 23, 247-249, 1998.
doi:10.1364/OL.23.000247

14. Gorodetsky, M. L. and V. S. Ilchenko, "High-Q optical whisperinggallery microresonators: Precession approach for spherical mode analysis and emission patterns with prism couplers," Opt. Comm., Vol. 113, 133-143, 1994.
doi:10.1016/0030-4018(94)90603-3

15. Collot, L., V.Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, "Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres," Europhys. Lett., Vol. 23, No. 5, 327-334, Aug. 1993.
doi:10.1209/0295-5075/23/5/005

16. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, Inc., 1999.

17. Little, B. E., J. P. Laine, and H. A. Haus, "Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators," Journal of Lightwave Technology, Vol. 17, No. 4, Apr. 1999.
doi:10.1109/50.754802

18. Berneschi, S., Microlaser in rare earths doped glasses, Degree of Doctor of Philosophy Thesis, Anno Accademico.
doi:2005--2006

19. Collot, L., V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, "Very high-Q whispering-gallery mode resonances observed on fused silica microspheres," Europhys. Lett., Vol. 23, 327-334, 1993.
doi:10.1209/0295-5075/23/5/005

20. Abramovitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Vol. 55, National Bureau of Standards Applied Mathematics Series, Washington, D.C., 1972.

21. Mine, E., A. Yamada, Y. Kobayashi, M. Konno, and L. M. Liz-Marzan, "Direct coating of gold nanoparticles with silica by a seeded polymerization technique," Journal of Colloid and Interface Science, Vol. 264, No. 2, 385-390, 2003.
doi:10.1016/S0021-9797(03)00422-3

22. Graf, C., D. L. J. Vossen, A. Imhof, and A. V. Blaaderen, "A general method to coat colloidal particles with silica," Langmuir, Vol. 19, No. 17, 2003.
doi:10.1021/la0347859

23. Yu, Y., G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photonics Technology Letters, Vol. 16, No. 4, 2004.
doi:10.1109/LPT.2004.824631

24. Liu, T., Y. H. Wang, R. Ddumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. Becker, and H. Walther, "Narrow linewidth light source for an ultraviolet optical frequency standard," Appl. Phys. B, Vol. 87, 227-232, 2007.
doi:10.1007/s00340-007-2599-5

25. Lam, C. C., P. T. Leumg, and K. Young, "Explicit asymptotic formulas for the positions, width and strength of resonances in the mie scattering," J. Opt. Soc. Am. B, Vol. 1585, 1992.

26., Datsyuk and V. V., "Some characteristic of resonant electromagnetic modes in a dielectric sphere," Appl. Phys. B, Vol. 54, 184-187, 1992.