1. Paszkowski, B., Electron Optics, London Eliffe Books, American Elsevier, 1968.
2. Szilágyi, M., Electron and Ion Optics, Plenum Press, 1988.
3. Hawkes, P. W. and E. Kasper, Principles of Electron Optics, Vol. 1, Academic Press, 1989.
4. Kraus, C., et al. "Final results from phase II of the Mainz neutrino mass search in tritium β decay," Eur. Phys. J. C, Vol. 40, 447, 2005.
doi:10.1140/epjc/s2005-02139-7 Google Scholar
5. Lobashev, V. M., "The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN," Nucl. Phys. A, Vol. 719, 153c, 2003.
doi:10.1016/S0375-9474(03)00985-0 Google Scholar
6. Glück, F., et al. "The neutron decay retardation spectrometer aSPECT: Electromagnetic design and systematic effects," Eur. Phys. J. A, Vol. 23, 135, 2005.
doi:10.1140/epja/i2004-10057-1 Google Scholar
7. Baessler, S., et al. "First measurements with the neutron decay spectrometer aSPECT," Eur. Phys. J. A, Vol. 38, 17, 2008.
doi:10.1140/epja/i2008-10660-0 Google Scholar
8. Beck, M., et al. "WITCH: A recoil spectrometer for weak interaction and nuclear physics studies," Nucl. Instrum. Methods A, Vol. 503, 567, 2003.
doi:10.1016/S0168-9002(03)00994-X Google Scholar
9. Friedag, P., Bahnverfolgungssimulationen für das WITCH-experiment, Diploma thesis, University of MÄunster, 2008.
10. Angrik, J., et al. KATRIN design report 2004, FZKA Scientific Report 7090, Forschungszentrum Karlsruhe, 2005, http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf.
11. Chari, M. V. K. and S. J. Salon, Numerical Methods in Electromagnetism, Academic Press, 2000.
12. Maxwell, J. C., A Treatise on Electricity and Magnetism, Vol. 1, Clarendon Press, 1873.
13. Durand, E., Electrostatique, Vol. 1, Masson et Cie, 1964.
14. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, 1999.
15. Smythe, W. R., Static and Dynamic Electricity, McGraw Hill Book Company, 1968.
16. Kellogg, O. D., Foundations of Potential Theory, Springer Verlag, 1967.
17. Garrett, M. W., "Axially symmetric systems for generating and measuring magnetic fields," J. Appl. Phys., Vol. 22, 1091-1107, 1951.
doi:10.1063/1.1700115 Google Scholar
18. Garrett, M. W., "The method of zonal harmonics," High Magnetic Fields, H. Kolm, et al. (eds.), John Wiley and Sons, 1962. Google Scholar
19. Garrett, M. W., Computer programs using zonal harmonics for magnetic properties of current systems with special reference to the IBM 7090, ORNL-3318, Oak Ridge National Laboratory, USA, 1962.
20. Garrett, M. W., "Thick cylindrical coil systems for strong magnetic ¯elds with field or gradient homogeneities of the 6th to 20th order," J. Appl. Phys., Vol. 38, 2563, 1967.
doi:10.1063/1.1709950 Google Scholar
21. Thümmler, T., Präzisionsüberwachung und Kalibration der Hochspannung für das KATRIN-experiment, Dissertation, University of Münster, 2007.
22. Pocanic, D., et al. "Nab: Measurement principles, apparatus and uncertainties," Nucl. Instrum. Methods A, Vol. 611, 211, 2009.
doi:10.1016/j.nima.2009.07.065 Google Scholar
23. Valerius, K., Elektromagnetisches Design für das Hauptspektrometer des KATRIN Experiments, Diploma thesis, University of Bonn, 2004.
24. Valerius, K., Spectrometer-related background processes and their suppression in the KATRIN experiment, Dissertation, University of Münster, 2009.
25. Hugenberg, K., Design of the electrode system for the KATRIN main spectrometer, Diploma thesis, University of Münster, 2008.
26. Zacher, M., Electromagnetic design and field emission studies for the inner electrode system of the KATRIN main spectrometer, Diploma thesis, University of Münster, 2009.
27. Wandkowsky, N., Design and background simulations for the KATRIN main spectrometer and air coil system, Diploma thesis, Karlsruhe Institute of Technology, 2009.
28. Fränkle, F., Background investigations of the KATRIN prespectrometer, Dissertation, Karlsruhe Institute of Technology, 2010.
29. Groh, S., Untersuchung von UV-laser induziertem Untergrund am KATRIN Vorspektrometer, Diploma thesis, Karlsruhe Institute of Technology, 2010.
30. Hein, J. H. C., Angular defined photo-electron sources for the KATRIN experiment, Diploma thesis, University of Münster, 2010.
31. Valerius, K., et al. "Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment," J. Inst., Vol. 6, P01002, 2011.
doi:10.1088/1748-0221/6/01/P01002 Google Scholar
32. Lukic, S., et al. "Ion source for tests of ion behavior in the KATRIN beam line," Rev. Sci. Instrum., Vol. 82, 013303, 2011.
doi:10.1063/1.3504372 Google Scholar
33. KATRIN homepage, Talks and Publications, Diploma and Ph.D. theses, http://www-ik.fzk.de/~katrin/publications/thesis.html.
34. Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, AG Prof. Dr. C. Weinheimer, http://www.unimuenster.de/Physik.KP/AGWeinheimer/Arbeiten-de.html.
35. Vöcking, S. Implementierung der multipole boundary element methode für das KATRIN-experiment, Diploma thesis, University of Münster, 2008.
36. Corona, T. J. Tools for electromagnetic field simulation in the KATRIN experiment, master thesis, MIT, 2009.
37. Leiber, B., "Non-axially symmetric field and trajectory calculations for the KATRIN experiment," Diploma thesis, 2010. Google Scholar
38. Babutzka, M., et al. The comprehensive guide to KASSIOPEIA, version 1.00.00, KATRIN internal report.
39. Böttcher, C. J. F., Theory of Electric Polarization, Vol. 1, Elsevier Sci. Publ. Comp., 1973.
40. Griffiths, D. J., Introduction to Electrodynamics, Prentice Hall, Upper Saddle River, 1999.
41. Cowan, E. W., Basic Electromagnetism, Academic Press, 1968.
42. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, Dover Publications, 1962.
43. Ravaud, R., G. Lemarquand, and S. I. Babic, "Introducing fictitious currents for calculating analytically the electric field in cylindrical capacitors," Progress In Electromagnetics Research M, Vol. 9, 139-150, 2009.
doi:10.2528/PIERM09101509 Google Scholar
44. Gamelin, T. W., Complex Analysis, Springer-Verlag, 2001.
45. Needham, T., Visual Complex Analysis, Clarendon Press, 1997.
46. Szegö, G., "On the singularities of zonal harmonic expansions," J. Rat. Mech. Anal., Vol. 3, 561, 1954. Google Scholar
47. Sneddon, I. N., Special Functions of Mathematical Physics and Chemistry, Longman, 1980.
48. Rainville, E. D., Special Functions, The MacMillan Company, 1960.
49. Bell, W. W., Special Functions for Scientists and Engineers, D. Van Nostrand Company Ltd., 1965.
50. Andrews, L. C., Special Functions of Mathematics for Engineers, Oxford University Press, 1998.
51. Boas, M. L., Mathematical Methods in the Physical Sciences, John Wiley & Sons, 2006.
52. Frerichs, V., W. G. Kaenders, and D. Meschede, "Analytic construction of magnetic multipoles from cylindric permanent magnets," Appl. Phys. A, Vol. 55, 242, 1992.
doi:10.1007/BF00348392 Google Scholar
53. Evans, G., Practical Numerical Integration, John Wiley & Sons, 1993.
54. Kythe, P. K. and M. R. Schäferkotter, Handbook of Computational Methods for Integration, Chapman & Hall/CRC, 2005.