1. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Ed., CRC Press, 2001.
2. Salon, S. and M. V. K. Chari, Numerical Methods in Electromagnetism, Academic Press, 1999.
3. Rjasanow, S. and O. Steinbach, The Fast Solution of Boundary Integral Equations, Springer, 2007.
4. Baranger, J., J. F. Maitre, and F. Oudin, "Connection between finite volume and mixed finite element methods," RAIRO, Modelisation Math. Anal. Numer., Vol. 30, 445-465, 1996. Google Scholar
5. De La Bourdonnay, A. and S. Lala, "Duality between finite elements and finite volumes and Hodge operator," Numerical Methods in Engineering'96, 557-561, Wiley & Sons, Paris, 1996. Google Scholar
6. Bossavit, A. and L. Kettunen, "Yee-like schemes on staggered cellular grids: A synthesis between FIT and FEM approaches," IEEE Trans. Magn., Vol. 36, No. 4, 861-867, 2000.
doi:10.1109/20.877580 Google Scholar
7. Teixeira, F. L., "Geometric aspects of the simplicial discretization of Maxwell's equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107 Google Scholar
8. Tonti, E., "Finite formulation of the electromagnetic field," Progress In Electromagnetics Research, Vol. 32, 1-44, 2001.
doi:10.2528/PIER00080101 Google Scholar
9. Mattiussi, C., "An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology," J. Comp. Phys., Vol. 9, 295-319, 1997. Google Scholar
10. Gross, P. W. and P. R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach, Cambridge University Press, 2004.
doi:10.1017/CBO9780511756337
11. Maxwell, J. C., A Treaties on Electricity and Magnetism, Clarendon Press, 1892, Reprinted in 2002.
12. Stern, A., Y. Tong, M. Desbrun, and J. E. Marsden, "Computational electromagnetism with variational integrators and discrete differential forms," arXiv: 0707.4470 [math.NA], 2007. Google Scholar
13. Hiptmair, R., "Discrete Hodge-operators: An algebraic perspective," Progress In Electromagnetics Research, Vol. 32, 247-269, 2001.
doi:10.2528/PIER00080110 Google Scholar
14. Hiptmair, R., "Discrete Hodge operators," Numer. Math., Vol. 90, No. 2, 65-289, 2001.
doi:10.1007/s002110100295 Google Scholar
15. Auchmann, B. and S. Kurz, "A geometrically defined discrete Hodge operator on simplicial cells," IEEE Trans. Magn., Vol. 42, No. 4, 643-646, 2006.
doi:10.1109/TMAG.2006.870932 Google Scholar
16. Mickens, R. E., Applications of Nonstandard Finite Difference Schemes, World Scientific, 2000.
doi:10.1142/9789812813251
17. Marrone, M., "Computational aspects of the cell method in electrodynamics," Progress In Electromagnetics Research, Vol. 32, 317-356, 2001.
doi:10.2528/PIER00080113 Google Scholar
18. Garcia, S. G. and T.-W. Lee, "On the accuracy of the ADI-FDTD method," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 2002. Google Scholar
19. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, 2008.
doi:10.1109/TAP.2008.2005544 Google Scholar
20. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026 Google Scholar
21. Anguelov, R. and S. Lubuma, "On non-standard finite difference models of reaction-diffusion equations," Journal of Applied Mathematics, Vol. 175, No. 1, 2005. Google Scholar
22. Bossavit, A., "Generalized finite differences' in computational electromagnetics," Progress In Electromagnetics Research, Vol. 32, 45-64, 2001.
doi:10.2528/PIER00080102 Google Scholar
23. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," Journal of Mathematical Physics, Vol. 40, No. 1, 1999.
doi:10.1063/1.532767 Google Scholar
24. Alotto, P., F. Freschi, and M. Repetto, "Multiphysics problems via the cell method: The role of Tonti diagrams," IEEE Trans. Magn., 2959-2962, Aug. 2010.
doi:10.1109/TMAG.2010.2044487 Google Scholar
25. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250 Google Scholar
26. Tarhasaari, T. and L. Kettunen, "Topological approach to computational electromagnetism," Progress In Electromagnetics Research, Vol. 32, 189-206, 2001.
doi:10.2528/PIER00080108 Google Scholar
27. Truesdell, C. and R. A. Toupin, The Classical Field Theories, Harrdbuch der Physik, Vol. 311, 226-793, edited by S. Flugge, 1960.
28. Tarhasaari, T. and L. Kettunen, "Topological approach to computational electromagnetism," Progress In Electromagnetic Research, Vol. 32, 189-206, 2001.
doi:10.2528/PIER00080108 Google Scholar
29. Kirawanich, P., et al. "Methodology for interference analysis using electromagnetic topology techniques," Applied Physics Letters, Vol. 84, 2004. Google Scholar
30. Lindel, I. V., Differential Forms in Electromagnetics, IEEE Press, 2004.
doi:10.1002/0471723096
31. Lindel, I. V., "Electromagnetic wave equation in differential-form representation," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002 Google Scholar
32. Lindell, I. V., "Electromagnetic fields in self-dual media in differential-form representation," Progress In Electromagnetics Research, Vol. 58, 319-333, 2006.
doi:10.2528/PIER05072201 Google Scholar
33. Mattiussi, C., "The geometry of time-stepping," Progress In Electromagnetics Research, Vol. 32, 123-149, 2001.
doi:10.2528/PIER00080105 Google Scholar
34. Anguelov, R. and S. Lubuma, "Nonstandard dfinite-difference methods by nonlocal approwimations," Mathematics and Computer in Simulation, 2003. Google Scholar
35. Magrez, H. and A. Ziyyat, "Modélisation orientée objet en electromagntisme," Congrés Méditerranen des Télécommunications CMT, Casablanca, 2010.
36. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
37. Pinheiro, H., J. P. Webb, and I. Tsukerman, "Flexible local approximation models for wave scattering in photonic crystal devices," IEEE Trans. Magn., Vol. 43, No. 4, 1321-1324, 2007.
doi:10.1109/TMAG.2006.891004 Google Scholar
38. Tsukerman, I., "A class of difference schemes with flexible local approximation," The Journal of Computational Physics, Vol. 211, No. 2, 659-699, 2006.
doi:10.1016/j.jcp.2005.06.011 Google Scholar