1. Pu, T.-L., K.-M. Huang, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1207-1217, 2010.
doi:10.1163/156939310791586025
2. Young, J. L., "A full finite difference time-domain implementation for radio wave propagation in plasma," Radio Sci., Vol. 29, 1513-1522, 1994.
doi:10.1029/94RS01921
3. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882
4. Ai, X., Y. Han, C. Y. Li, and X.-W. Shi, "Analysis of dispersion relation of piecewise linear recursive convolution FDTD method for space-varying plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011.
5. Huang, S. and F. Li, "Time domain analysis of transient propagation in inhomogeneous magnetized plasma using Z-transforms," Journal of Electronics (China), Vol. 23, No. 1, 113-116, 2006.
doi:10.1007/s11767-004-0028-z
6. Shibayama, J., R. Takahashi, A. Nomura, J. Yamauchi, and H. Nakano, "Concise frequency-dependent formulation for LOD-FDTD method using Z transforms," Electronics Letters, Vol. 44, No. 16, 949-950, 2008.
doi:10.1049/el:20081415
7. Liu, S., M. Liu, and W. Hong, "Modified piecewise linear current density recursive convolution finite-difference time-domain method for anisotropic magnetized plasma," IET Microw. Antennas Propag., Vol. 2, No. 7, 677-685, 2008.
doi:10.1049/iet-map:20070291
8. Shibayama, J., R. Ando, A. Nomura, J. Yamauchi, and H. Nakano, "Simple trapezoidal recursive convolution technique for the frequency-dependent FDTD analysis of a Drude-Lorentz model," IEEE Photonics Technology Letters, Vol. 21, 100-102, 2009.
doi:10.1109/LPT.2008.2009003
9. Liu, S., S. Liu, and S. Liu, "Analysis for scattering of conductive objects covered with anisotropic magnetized plasma by trapezoidal recursive convolution finite-difference time-domain method," Int. J. RF and Microwave CAE, Vol. 20, 465-472, 2010.
10. Ramadan, O, "Unsplit field implicit PML algorithm for complex envelope dispersive LOD- FDTD simulations," Electronics Letters, Vol. 43, No. 5, 17-18, 2007.
doi:10.1049/el:20073945
11. Tan, E. L., "Acceleration of LOD-FDTD method using fundamental scheme on graphics processor units," IEEE Microwave Theory and Techniques Society, Vol. 20, No. 12, 648-650, 2010.
12. Yang, L., Y. Xie, and P. Yu, "Study of bandgap characteristics of 2D magnetoplasma photonic crystal by using M-FDTD method," Microwave and Optical Technology Letters, Vol. 53, No. 8, 1778-1784, 2011.
doi:10.1002/mop.26143
13. Attiya, A. M. and H. H. Abdullah, "Shift-operator finite difference time domain: An efficient unified approach for simulating wave propagation in different dispersive media," IEEE Middle East Conference on Antennas and Propagation, 1-4, 2010.
doi:10.1109/MECAP.2010.5724201
14. Wang, F., B. Wei, and D.-B. Ge, "A method for FDTD modeling of wave propagation in magnetized plasma," International Conference on Consumer Electronics, Communications and Networks, 4659-4662, 2011.
15. Ma, L.-X., H. Zhang, et al. "Improved finite difference time-domain method for anisotropic magnetised plasma based on shift operator," IET Microw. Antennas Propag., Vol. 4, No. 9, 1442-1447, 2010.
doi:10.1049/iet-map.2009.0612
16. Cereceda, C., M. De Peretti, and C. Deutsch, "Stopping power for arbitrary angle between test particle velocity and magnetic field," Phys. Plasmas, Vol. 12, 022102, 2005.
doi:10.1063/1.1848545
17. Nersisyan, H. B., C. Toepffer, and G. Zwicknagel, Interaction between Charged Particles in a Magnetic Field: A Theoretical Approach to Ion Stopping in Magnetized Plasmas, Springer-Verlag, 2007.
18. Deutsch, C. and R. Popoff, "Low velocity ion slowing down in a strongly magnetized plasma target," Phys. Rev., Vol. E78, 056405, 2008.
19. Xu, L. J. and N. C. Yuan, "FDTD formulations for scattering from 3-D anisotropic magnetized plasma objects," IEEE Ant. & Wireless Propagt. Letters, Vol. 5, 335-338, 2006.
doi:10.1109/LAWP.2006.878901
20. Qian, Z. H. and R. S. Chen, "FDTD analysis of magnetized plasma with arbitrary magnetic declination," International Journal of Infrared and Millimeter Waves, Vol. 28, No. 5, 815-825, 2007.
21. Yang, L.-X., Y.-J. Wang, and G. Wang, "A 3D FDTD implementation of electromagnetic scattering by magnetized plasma medium based on laplace transfer principle," Acta Electronica Sinica (China), Vol. 37, No. 12, 2711-2715, 2009.
22. Ma, L.-X., H. Zhang, et al. "Shift-operator FDTD method for anisotropic plasma in kDB coordinates system," Progress In Electromagnetics Research M, Vol. 12, 51-65, 2010.
doi:10.2528/PIERM09122901
23. Li, J. and J. Dai, "An efficient implementation of the stretched coordinate perfectly matched layer," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 5, 322-324, 2007.
doi:10.1109/LMWC.2007.895690
24. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, 2nd Ed., Ch. 6, Pergamon, 1970.