1. Massa, A., G. Franceschini, M. Donelli, and R. Azaro, "Inversion of phaseless total field data using a two step strategy based on the iterative multi scaling approach ," IEEE Trans. on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, 2006.
2. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011. Google Scholar
3. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1609-1626, 2000.
doi:10.1163/156939300X00383 Google Scholar
4. Massa, A., D. Franceschini, M. Donelli, and P. Rocca, "Three dimensional microwave imaging problems solved through an efficient multi scaling particle swarm optimization," IEEE Trans. on Geoscience and Remote Sensing, Vol. 47, No. 5, 1467-1481, 2009.
doi:10.1109/TGRS.2008.2005529 Google Scholar
5. Weedon, W. H., W. C. Chew, and P. E. Mayes, "A step-frequency radar imaging system for microwave nondestructive evaluation," Progress In Electromagnetics Research, Vol. 28, 121-146, 2000.
doi:10.2528/PIER99062501 Google Scholar
6. Liu, D. H., J. Krolik, and L. Carin, "Electromagnetic target detection in uncertain media: Time-reversal and minimum variance algorithms ," IEEE Trans. on Geoscience and Remote Sensing, Vol. 45, 934-944, 2007.
doi:10.1109/TGRS.2006.890411 Google Scholar
7. Prada, C., S. Mannevile, D. Spoliansky, and M. Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers," J. Acoust. Soc. Amer., Vol. 99, 2067-2076, 1996.
doi:10.1121/1.415393 Google Scholar
8. Chambers, D. H. and J. G. Berryman, "Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field," IEEE Trans. Antennas Propag., Vol. 52, 1729-1738, 2004.
doi:10.1109/TAP.2004.831323 Google Scholar
9. Zhu, X., Z. Zhao, W. Yang, Y. Zhang, Z.-P. Nie, and Q. H. Liu, "Iterative time-reversal mirror method for imaging the buried object beneath rough ground surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011. Google Scholar
10. Marengo, E. A., F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Trans. Image Proc., Vol. 16, 1967-1984, 2007.
doi:10.1109/TIP.2007.899193 Google Scholar
11. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408 Google Scholar
12. Lehman, S. K. and A. J. Devaney, "Transmission mode time-reversal super resolution imaging," J. Acoust. Soc. Amer., Vol. 113, 2742-2752, 2003.
doi:10.1121/1.1566975 Google Scholar
13. Lev-Ari, H. and A. J. Devaney, "The time reversal techniques reinterpreted: Subspace-based signal processing for multistatic target location," IEEE Sensor Array Multichannel Signal Proc., Workshop, 509-513, 2000. Google Scholar
14. Yavuz, M. E. and F. L. Teixeira, "Full time-domain DORT for ultrawideband fields in dispersive, random inhomogeneous media," IEEE Trans. Antennas Propag., Vol. 54, 2305-2315, 2006.
doi:10.1109/TAP.2006.879196 Google Scholar
15. Zhao, H., "Analysis of the response matrix for an extended target," SIAM J. Appl. Math., Vol. 64, 725-745, 2004.
doi:10.1137/S0036139902415282 Google Scholar
16. Yavuz, M. E. and F. L. Teixeira, "On the sensitivity of time-reversal imaging techniques to model perturbations," IEEE Trans. Antennas Propag., Vol. 56, 834-843, 2008.
doi:10.1109/TAP.2008.916933 Google Scholar
17. Davy, F., J.-G. Minonzio, J. de Rosny, C. Prada, and M. Fink, "In°uence of noise on subwavelength imaging of two close scatterers using time reversal method: Theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/PIER09071004 Google Scholar
18. Anderson, T. W., "Asymptotic theory for principal component analysis," Ann. J. Math. Stat., Vol. 34, 122-148, 1963.
doi:10.1214/aoms/1177704248 Google Scholar
19. Akaike, H., "A new look at the statistical model identification," IEEE Trans. Automat. Contr., Vol. 19, No. 6, 716-723, 1974.
doi:10.1109/TAC.1974.1100705 Google Scholar
20. Rissanen, J., "Modeling by shortest data description," Automatira, Vol. 14, 465-471, 1978.
doi:10.1016/0005-1098(78)90005-5 Google Scholar
21. Hannan, E. J., "The determination of the order of an autoregression," J. Roy. Srar. Soc. Bvol., Vol. 41, No. 2, 190-195, 1979. Google Scholar
22. Wax, W. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. on Acoustic, Speech, and Signal Proc., Vol. 33, 387-392, 1985.
doi:10.1109/TASSP.1985.1164557 Google Scholar
23. Haddadi, F., "Statistical performance analysis of mdl source enumeration in array processing," IEEE Trans. on Signal Proc., Vol. 58, 452-457, 2010.
doi:10.1109/TSP.2009.2028207 Google Scholar
24. Devaney, A. J., Super-resolution processing of multi-static data using time reversal and MUSIC, Northeastern University Report, available at http://www.ece.neu.edu/faculty/devaney/ajd/preprints.htm.
25. Marengo, E. A. and F. K. Gruber, "Subspace-based localization and inverse scattering of multiply scattering point targets," EURASIP Journal on Advances in Signal Processing, 1-16, 2007. Google Scholar
26. Fishler, E. and H. V. Poor, "Estimation of the number of sources in unbalanced array via information theoretic criteria," IEEE Trans. on Signal Proc., Vol. 53, 3543-3553, 2005.
doi:10.1109/TSP.2005.853099 Google Scholar
27. Fishler, E., M. Grossmann, and H. Messer, "Detection of signals by information theoretic criteria: General asymptotic performance analysis," IEEE Trans. on Signal Proc., Vol. 50, 1027-1036, 2002.
doi:10.1109/78.995060 Google Scholar
28. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inverse Problems, Vol. 17, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301 Google Scholar