1. Ruehli, A. E., "Equivalent circuit models for three dimensional multiconductor systems," IEEE Trans. on Microwave Theory and Techniques, Vol. 22, No. 3, 216-221, The original PEEC (partial element equivalent circuit) paper, Mar. 1974.
doi:10.1109/TMTT.1974.1128204 Google Scholar
2. Song, Z. F., D. L. Su, F. Duval, and A. Lous, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011. Google Scholar
3. Frank, F., M. Zitzmann, G. Steinmair, and R. Weigel, "Methods for circuit-based automotive EMC simulation incorporating VHDL-AMS models," Proc. of Asia-Pacific Symp. on EMC, Singapore, 2008. Google Scholar
4. Thamm, S., S. V. Kochetov, G. Wollenberg, and M. Leone, "PEEC modeling for EMC-relevent simulations of power electronics," Proc. of 17th Int. Conf. on Radioelektronika, Brno, Czech Republic, 2007. Google Scholar
5. De Oliveira, T., J. Guichon, J. Schanen, and L. Gerbaud, "PEEC-models for EMC layout optimization," Proc. of 6th Int. Conf. on Integrated Power Electronics Systems (CIPS), Nüremberg, Germany, 2010. Google Scholar
6. Müsing, A., J. Ekman, and J. W. Kolar, "Efficient calculation of non-orthogonal partial elements for the PEEC method," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1140-1143, Mar. 2009.
doi:10.1109/TMAG.2009.2012655 Google Scholar
7. Antonini, G., A. Orlandi, and A. E. Ruehli, "Analytical integration of quasi-static potential integrals on nonorthogonal coplanar quadrilaterals for the PEEC method," IEEE Trans. on Electromagnetic Compatibility, Vol. 44, No. 2, 399-403, 2002.
doi:10.1109/TEMC.2002.1003407 Google Scholar
8. Antonini, G., A. Ruehli, and J. Esch, "Non orthogonal PEEC formulation for time and frequency domain modeling," Proc. of the IEEE Int. Symp. on Electromagnetic Compatibility, Minneapolis, MN, Aug. 2002.
doi:10.1109/TEMC.2002.1003407 Google Scholar
9. Chew, W. C., J. M. Jin, C. C. Lu, E. Michielssen, and J. M. Song, "Fast solution methods in electromagnetics," IEEE Trans. on Antennas and Propagation, Vol. 45, No. 3, 533-543, 1997.
doi:10.1109/8.558669 Google Scholar
10. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassilou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 6, 634-641, Jun. 1992.
doi:10.1109/8.144597 Google Scholar
11. Kapur, S. and D. Long, "IES3: A fast integral equation equation solver for efficient 3-dimensional extraction," Int. Conf. on Computer Aided Design, 448-455, Nov. 1997. Google Scholar
12. Antonini, G., "Fast multipole formulation for PEEC frequency domain modeling," Journal Applied Computat. Electromag. Society, Vol. 17, No. 3, Nov. 2002. Google Scholar
13. Antonini, G., A. Orlandi, and A. Ruehli, "Speed-up of PEEC method by using wavelet transform," Proc. of the IEEE Int. Symp. on Electromagnetic Compatibility, Washington, DC, Aug. 2000. Google Scholar
14. Antonini, G., A. Orlandi, and A. E. Ruehli, "Fast iterative solution for the wavelet-PEEC method," Proc. of the International Zurich Symposium on Electromagnetic Compatibility, Zürich, SW, Feb. 2001. Google Scholar
15. Antonini, G. and A. Orlandi, "Computational properties of wavelet based PEEC analysis in time domain," Proc. of Applied Computational Electromagnetics Society Conf, Monterey (CA), USA, Mar. 2000. Google Scholar
16. Antonini, G. and A. E. Ruehli, "Fast multipole method and multifunction PEEC methods," IEEE Trans. on Mobile Computing, Vol. 2, No. 4, 288-298, Dec. 2003.
doi:10.1109/TMC.2003.1255644 Google Scholar
17. Daroui, D. and J. Ekman, "Parallel implementation of the PEEC method," Journal Applied Computat. Electromag. Society, Vol. 25, No. 5, 410-422, 2010. Google Scholar
18. Hanawa, T., M. Kurosawa, and S. Ikuno, "Investigation on 3-D implicit FDTD method for parallel processing," IEEE Trans. on Magnetics, Vol. 41, No. 5, 1696-1699, May 2005.
doi:10.1109/TMAG.2005.846066 Google Scholar
19. Rubinstein, A., F. Rachidi, M. Rubinstein, and B. Reusser, "A parallel implementation of NEC for the analysis of large structures," IEEE Trans. on Electromagnetic Compatibility, Vol. 45, No. 2, May 2003.
doi:10.1109/TEMC.2003.810806 Google Scholar
20. Ruehli, A. E., "Inductance calculations in a complex integrated circuit environment," IBM Journal of Research and Development, Vol. 16, No. 5, 470-481, Sep. 1972.
doi:10.1147/rd.165.0470 Google Scholar
21. Ruehli, A. E. and P. A. Brennan, "Efficient capacitance calculations for three-dimensional multiconductor systems," IEEE Trans. on Microwave Theory and Techniques, Vol. 21, No. 2, 76-82, Feb. 1973.
doi:10.1109/TMTT.1973.1127927 Google Scholar
22. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, WILEY, 1994.
23. Ruehli, A. E., G. Antonini, J. Esch, J. Ekman, A. Mayo, and A. Orlandi, "Non-orthogonal PEEC formulation for time and frequency domain EM and circuit modeling," IEEE Trans. on Electromagnetic Compatibility, Vol. 45, No. 2, 167-176, May 2003.
doi:10.1109/TEMC.2003.810804 Google Scholar
24. Antonini, G., J. Ekman, and A. Orlandi, "Full wave time domain PEEC formulation using a modified nodal analysis approach," Proc. of EMC Europe, Eindhoven, The Netherlands, 2004. Google Scholar
25. Ho, C., A. Ruehli, and P. Brennan, "The modified nodal approach to network analysis," IEEE Trans. on Circuits and Systems, 504-509, The original MNA paper, Jun. 1975. Google Scholar
26. Antonini, G., J. Ekman, A. Ciccomancini Scogna, and A. E. Ruehli, "A comparative study of PEEC circuit elements computation," Proc. of the IEEE Int. Symp. on EMC, Istanbul, Turkey, 2003. Google Scholar
27. Choi, J., J. J. Dongarra, R. Pozo, and D. Walker, "ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers," Proc. of the Fourth Symp. on the Frontiers of Massively Parallel Computation, IEEE Computer Society Press, 1992. Google Scholar
28. Gratton, S., "Graphics card computing for cosmology: Cholesky factorization," Proc. of IEEE 10th Conf. on Computer and Information Technology, Bradford, UK, 2010. Google Scholar
29. Daroui, D., "Performance of integral equation based electromag- netic analysis software on parallel computer systems,", MS thesis, University of Gothenburg, Feb. 2007. Google Scholar
30. Dongarra, J. J. and D. W. Walker, "The design of linear algebra libraries for high performance computers,", No. ORNL/TM-12404, University of Tennessee, Knoxville, TN, USA, 1993, citeseer.ist.psu.edu/article/dongarra93design.html.. Google Scholar
31. Daroui, D., I. Stevanović, D. Cottet, and J. Ekman, "Bus bar simulations using the PEEC method," Proc. of 26th Int. Review of Progress in Applied Computational Electromagnetics ACES, Tampere, Finland, 2010. Google Scholar
32. Cottet, D., I. Stevanović, B. Wunsch, D. Daroui, J. Ekman, and G. Anotinini, "EM simulation of planar bus bars in multi-level power converters," Proc. of EMC Europe, Rome, Italy, 2012. Google Scholar
33. FEKO-Electromagnetic simulation software, Available Online: http://www.feko.info.. Google Scholar
34. Harrington, R. F., Time-Harmonic Electromagnetic Fields, the method of moments reference, McGraw-Hill Book Co., 1961; New Edition, Krieger, 1982.
35. Helmbold, D. P. and C. E. McDowell, "Modeling speedup (n) greater than n," IEEE Trans. on Parallel and Distributed Systems, Vol. 1, No. 2, 250-256, Apr. 1990.
doi:10.1109/71.80148 Google Scholar
36. Avinash, S., B. N. Joshi, and A. M. Mahajan, "Analysis of capacitance across interconnects of low-K dielectric used in a deep sub-micron CMOS technology," Progress In Electromagnetics Research Letters, Vol. 1, 189-196, 2008.
doi:10.2528/PIERL07112802 Google Scholar