1. Schuster, A., An Introduction to the Theory of Optics, Edward Arnold, London, 1904.
2. Pocklington, H. C., "Growth of a wave-group when the group-velocity is negative," Nature, Vol. 71, No. 1852, 607-608, Apr. 1905.
doi:10.1038/071607b0 Google Scholar
3. Malyuzhinets, G. D., "A note on the radiation principle," Zh. Tekh. Fiz., Vol. 21, 940-942, 1951. Google Scholar
4. Sivukhin, D. V., "The energy of electromagnetic waves in dispersive media," Opt. Spetrosk., Vol. 3, 308-312, 1957. Google Scholar
5. Veselago, V. G., "The electrodynamics of substances with simulataneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, Jan.-Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
6. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, No. 22, 4785-4809, Jun. 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
7. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002 Google Scholar
9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847 Google Scholar
10. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity ," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
11. Soukoulis, C. M., S. Linden, and M.Wegener, "Negative refractive index at optical wavelengths," Science, Vol. 315, 47-49, Jan. 2007.
doi:10.1126/science.1136481 Google Scholar
12. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nat. Photonics, Vol. 5, 523-530, Jul. 2011. Google Scholar
13. Shalaev, V. M., "Optical negative-index metamaterials," Nat. Photonics, Vol. 1, 41-48, Jan. 2007.
doi:10.1038/nphoton.2006.49 Google Scholar
14. Jakšic, Z., N. Dalarsson, and M. Maksimovic, "Negative refractive index metamaterials: Principles and applications," Microwave Review, Vol. 12, No. 1, 36-49, Jun. 2006. Google Scholar
15. Xu, T., Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, "Sub-diffraction-limited interference photolithography with metamaterials," Opt. Express, Vol. 16, 13579-13584, Sep. 2008.
doi:10.1364/OE.16.013579 Google Scholar
16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, Oct. 2000. Google Scholar
17. Koschny, T., R. Moussa, and C. M. Soukoulis, "Limits on the amplification of evanescent waves of left-handed materials," J. Opt. Soc. Am. B, Vol. 23, 485-489, Mar. 2006.
doi:10.1364/JOSAB.23.000485 Google Scholar
18. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006. Google Scholar
19. Bulu, I., H. Caglayan, K. Aydin, and E. Ozbay, "Compact size highly directive antennas based on the SRR metamaterial medium," New J. Phys., Vol. 7, 223, Oct. 2005. Google Scholar
20. Güney, D. Ö. and D. A. Meyer, "Negative refraction gives rise to the Klein paradox," Phys. Rev. A, Vol. 79, 063834, Jun. 2009.
doi:10.1103/PhysRevA.79.063834 Google Scholar
21. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys., Vol. 5, 687-692, Jul. 2009. Google Scholar
22. Leonhardt, U. and T. G. Philbin, "Quantum levitation by left-handed metamaterials," New J. of Phys., Vol. 9, 254, Aug. 2007.
doi:10.1088/1367-2630/9/8/254 Google Scholar
23. Xi, J. Q., M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection ," Nat. Photonics, Vol. 1, No. 3, 176-179, Mar. 2007. Google Scholar
24. Olivier, A., "Permeability enhancement of soft magnetic films through metamaterial structures ," J. Magnetism and Magnetic Materials, Vol. 320, No. 23, 3276-3281, Dec. 2008.
doi:10.1016/j.jmmm.2008.06.039 Google Scholar
25. Ruppin, R., "Surface polaritons of a left-handed material slab," J. of Phys.: Condensed Matter, Vol. 13, No. 9, 1811-1819, Mar. 2001.
doi:10.1088/0953-8984/13/9/304 Google Scholar
26. Darmanyan, S. A., M. Neviµere, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Comm., Vol. 225, No. 4-6, 233-240, Sep. 2003.
doi:10.1016/j.optcom.2003.07.047 Google Scholar
27. Dolling, G., M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett., Vol. 32, 551-553, Mar. 2007.
doi:10.1364/OL.32.000551 Google Scholar
28. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nat. Photonics, Vol. 6, 259, Mar. 2012.
doi:10.1038/nphoton.2012.27 Google Scholar
29. Smith, D. R., S. Schultz, P. Markoscaron, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, May 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
30. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
31. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial ," Science, Vol. 312, 892-894, May 2006.
doi:10.1126/science.1126021 Google Scholar
32. Woodley, J. F. and M. Mojahedi, "Negative group velocity and group delay in left-handed media," Phys. Rev. E, Vol. 70, 046603, Oct. 2004. Google Scholar
33. Zhou, J., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index response of weakly and strongly coupled optical metamaterials," Phys. Rev. B, Vol. 80, 035109. Google Scholar
34. Ortuño, R., C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, "Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays," Phys. Rev. B, Vol. 79, 075425, Feb. 2009.
doi:10.1103/PhysRevB.79.075425 Google Scholar
35. Iwanaga, M., "First-principle analysis for electromagnetic eigen modes in a an optical metamaterial slab," Progress In Electromagetics Research, Vol. 132, 129-148, 2012. Google Scholar
36. Belov, P. A., R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretryakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Phys. Rev. B, Vol. 67, 113103, Mar. 2003.
doi:10.1103/PhysRevB.67.113103 Google Scholar
37. Maslovski, S. I. and M. G. Silveirinha, "Nonlocal permittivity rom a quasistatic model for a class of wire media," Phys. Rev. B, Vol. 80, 245101, Dec. 2009.
doi:10.1103/PhysRevB.80.245101 Google Scholar
38. Silveirinha, M. G. and P. A. Belov, "Spatial dispersion in lattices of split ring resonators with permeability near zero," Phys. Rev. B, Vol. 77, 233104, Jun. 2008.
doi:10.1103/PhysRevB.77.233104 Google Scholar
39. Menzel, C., C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for metamaterials at oblique incidence," Phys. Rev. B, Vol. 77, 195328, May 2008.
doi:10.1103/PhysRevB.77.195328 Google Scholar
40. Aslam, M. I. and D. Ö. Güney, "Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum," J. Opt. Soc. Am. B, Vol. 29, 2839-2847, Oct. 2012. Google Scholar
41. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376, Aug. 2008.
doi:10.1038/nature07247 Google Scholar
42. Paniagua-Dominguez, R., D. R. Abujetas, and J. A. Sanchez-Gil, "Ultra low-loss isotropic 2D optical negative index metamaterial based on hybrid metal-semiconductor nanowires," arXiv: 1210.8410, 2012.. Google Scholar
43. Govyadinov, A. A., V. A. Podolskiy, and M. A. Noginov, "Active metamaterials: Sign of refractive index and gain-assisted dispersion management," Appl. Phys. Lett., Vol. 91, 191103-3, Nov. 2007. Google Scholar
44. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, No. 7307, 735-738, Aug. 2010.
doi:10.1038/nature09278 Google Scholar
45. Fang, A., T. Koschny, and C. M. Soukoulis, "Self consistent calculations of loss-compensated fishnet metamaterials," Phys. Rev. B, Vol. 82, 121102, Sep. 2010.
doi:10.1103/PhysRevB.82.121102 Google Scholar
46. Wuestner, S., A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, "Overcoming losses with gain in a negative refractive index metamaterial," Phys. Rev. Lett., Vol. 105, 127401, Sep. 2010.
doi:10.1103/PhysRevLett.105.127401 Google Scholar
47. Xu, W., W. J. Padilla, and S. Sonkusale, "Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits ," Opt. Express, Vol. 20, 22406, Sep. 2012.
doi:10.1364/OE.20.022406 Google Scholar
48. Whitesides, G. M. and B. Grzybowski, "Self-assembly at all scales," Science, Vol. 295, 2418, Mar. 2002.
doi:10.1126/science.1070821 Google Scholar
49. Rockstuhl, C., F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of electromagnetic spectrum," Phys. Rev. Lett., Vol. 99, 017401, Jul. 2007. Google Scholar
50. Erb, R. M., H. S. Son, B. Samanta, V. M. Rotello, and B. B. Yellen, "Magnetic assembly of colloidal superstructures with multipole symmetry," Nature, Vol. 457, 999, Feb. 2009.
doi:10.1038/nature07766 Google Scholar
51. Soukoulis, C. M. and M. Wegener, "Optical metamaterials --- More bulky and less lossy," Science, Vol. 330, 1633, Dec. 2010.
doi:10.1126/science.1198858 Google Scholar
52. Pawlak, D. A., S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, and , "How far are we from making metamaterials by self organization? The microstructure of highly anisotropic particles with an SRR-like geometry," Adv. Func. Mater., Vol. 20, 116, Apr. 2010. Google Scholar
53. Chen, H., "Metamaterials: Constitutive parameters, performance, and chemical methods for realization," J. Mater. Chem., Vol. 21, 6452, Mar. 2011.
doi:10.1039/c0jm03138k Google Scholar
54. Vignolini, S., N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Ste¯k, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, "A 3D optical metamaterial made by self-assembly," Adv. Mater., Vol. 24, OP23, Mar. 2012. Google Scholar
55. Sha, X. W., E. N. Economou, D. A. Papaconstantopoulos, M. R. Pederson, M. J. Mehl, and M. Kafesaki, "Possible molecular bottom-up approach to optical metamaterials," Phys. Rev. B, Vol. 86, 115404, Sep. 2012.
doi:10.1103/PhysRevB.86.115404 Google Scholar
56. Chen, W.-C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely subwavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, 201104(R), May 2012. Google Scholar