1. Schuster, A., An Introduction to the Theory of Optics, Edward Arnold, London, 1904.
2. Pocklington, H. C., "Growth of a wave-group when the group-velocity is negative," Nature, Vol. 71, No. 1852, 607-608, Apr. 1905.
doi:10.1038/071607b0
3. Malyuzhinets, G. D., "A note on the radiation principle," Zh. Tekh. Fiz., Vol. 21, 940-942, 1951.
4. Sivukhin, D. V., "The energy of electromagnetic waves in dispersive media," Opt. Spetrosk., Vol. 3, 308-312, 1957.
5. Veselago, V. G., "The electrodynamics of substances with simulataneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, Jan.-Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699
6. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, No. 22, 4785-4809, Jun. 1998.
doi:10.1088/0953-8984/10/22/007
7. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773
8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002
9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847
10. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity ," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184
11. Soukoulis, C. M., S. Linden, and M.Wegener, "Negative refractive index at optical wavelengths," Science, Vol. 315, 47-49, Jan. 2007.
doi:10.1126/science.1136481
12. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nat. Photonics, Vol. 5, 523-530, Jul. 2011.
13. Shalaev, V. M., "Optical negative-index metamaterials," Nat. Photonics, Vol. 1, 41-48, Jan. 2007.
doi:10.1038/nphoton.2006.49
14. Jakšic, Z., N. Dalarsson, and M. Maksimovic, "Negative refractive index metamaterials: Principles and applications," Microwave Review, Vol. 12, No. 1, 36-49, Jun. 2006.
15. Xu, T., Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, "Sub-diffraction-limited interference photolithography with metamaterials," Opt. Express, Vol. 16, 13579-13584, Sep. 2008.
doi:10.1364/OE.16.013579
16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, Oct. 2000.
17. Koschny, T., R. Moussa, and C. M. Soukoulis, "Limits on the amplification of evanescent waves of left-handed materials," J. Opt. Soc. Am. B, Vol. 23, 485-489, Mar. 2006.
doi:10.1364/JOSAB.23.000485
18. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006.
19. Bulu, I., H. Caglayan, K. Aydin, and E. Ozbay, "Compact size highly directive antennas based on the SRR metamaterial medium," New J. Phys., Vol. 7, 223, Oct. 2005.
20. Güney, D. Ö. and D. A. Meyer, "Negative refraction gives rise to the Klein paradox," Phys. Rev. A, Vol. 79, 063834, Jun. 2009.
doi:10.1103/PhysRevA.79.063834
21. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys., Vol. 5, 687-692, Jul. 2009.
22. Leonhardt, U. and T. G. Philbin, "Quantum levitation by left-handed metamaterials," New J. of Phys., Vol. 9, 254, Aug. 2007.
doi:10.1088/1367-2630/9/8/254
23. Xi, J. Q., M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection ," Nat. Photonics, Vol. 1, No. 3, 176-179, Mar. 2007.
24. Olivier, A., "Permeability enhancement of soft magnetic films through metamaterial structures ," J. Magnetism and Magnetic Materials, Vol. 320, No. 23, 3276-3281, Dec. 2008.
doi:10.1016/j.jmmm.2008.06.039
25. Ruppin, R., "Surface polaritons of a left-handed material slab," J. of Phys.: Condensed Matter, Vol. 13, No. 9, 1811-1819, Mar. 2001.
doi:10.1088/0953-8984/13/9/304
26. Darmanyan, S. A., M. Neviµere, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Comm., Vol. 225, No. 4-6, 233-240, Sep. 2003.
doi:10.1016/j.optcom.2003.07.047
27. Dolling, G., M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett., Vol. 32, 551-553, Mar. 2007.
doi:10.1364/OL.32.000551
28. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nat. Photonics, Vol. 6, 259, Mar. 2012.
doi:10.1038/nphoton.2012.27
29. Smith, D. R., S. Schultz, P. Markoscaron, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, May 2002.
doi:10.1103/PhysRevB.65.195104
30. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.
31. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial ," Science, Vol. 312, 892-894, May 2006.
doi:10.1126/science.1126021
32. Woodley, J. F. and M. Mojahedi, "Negative group velocity and group delay in left-handed media," Phys. Rev. E, Vol. 70, 046603, Oct. 2004.
33. Zhou, J., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index response of weakly and strongly coupled optical metamaterials," Phys. Rev. B, Vol. 80, 035109.
34. Ortuño, R., C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, "Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays," Phys. Rev. B, Vol. 79, 075425, Feb. 2009.
doi:10.1103/PhysRevB.79.075425
35. Iwanaga, M., "First-principle analysis for electromagnetic eigen modes in a an optical metamaterial slab," Progress In Electromagetics Research, Vol. 132, 129-148, 2012.
36. Belov, P. A., R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretryakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Phys. Rev. B, Vol. 67, 113103, Mar. 2003.
doi:10.1103/PhysRevB.67.113103
37. Maslovski, S. I. and M. G. Silveirinha, "Nonlocal permittivity rom a quasistatic model for a class of wire media," Phys. Rev. B, Vol. 80, 245101, Dec. 2009.
doi:10.1103/PhysRevB.80.245101
38. Silveirinha, M. G. and P. A. Belov, "Spatial dispersion in lattices of split ring resonators with permeability near zero," Phys. Rev. B, Vol. 77, 233104, Jun. 2008.
doi:10.1103/PhysRevB.77.233104
39. Menzel, C., C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for metamaterials at oblique incidence," Phys. Rev. B, Vol. 77, 195328, May 2008.
doi:10.1103/PhysRevB.77.195328
40. Aslam, M. I. and D. Ö. Güney, "Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum," J. Opt. Soc. Am. B, Vol. 29, 2839-2847, Oct. 2012.
41. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376, Aug. 2008.
doi:10.1038/nature07247
42. Paniagua-Dominguez, R., D. R. Abujetas, and J. A. Sanchez-Gil, "Ultra low-loss isotropic 2D optical negative index metamaterial based on hybrid metal-semiconductor nanowires," arXiv: 1210.8410, 2012..
43. Govyadinov, A. A., V. A. Podolskiy, and M. A. Noginov, "Active metamaterials: Sign of refractive index and gain-assisted dispersion management," Appl. Phys. Lett., Vol. 91, 191103-3, Nov. 2007.
44. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, No. 7307, 735-738, Aug. 2010.
doi:10.1038/nature09278
45. Fang, A., T. Koschny, and C. M. Soukoulis, "Self consistent calculations of loss-compensated fishnet metamaterials," Phys. Rev. B, Vol. 82, 121102, Sep. 2010.
doi:10.1103/PhysRevB.82.121102
46. Wuestner, S., A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, "Overcoming losses with gain in a negative refractive index metamaterial," Phys. Rev. Lett., Vol. 105, 127401, Sep. 2010.
doi:10.1103/PhysRevLett.105.127401
47. Xu, W., W. J. Padilla, and S. Sonkusale, "Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits ," Opt. Express, Vol. 20, 22406, Sep. 2012.
doi:10.1364/OE.20.022406
48. Whitesides, G. M. and B. Grzybowski, "Self-assembly at all scales," Science, Vol. 295, 2418, Mar. 2002.
doi:10.1126/science.1070821
49. Rockstuhl, C., F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of electromagnetic spectrum," Phys. Rev. Lett., Vol. 99, 017401, Jul. 2007.
50. Erb, R. M., H. S. Son, B. Samanta, V. M. Rotello, and B. B. Yellen, "Magnetic assembly of colloidal superstructures with multipole symmetry," Nature, Vol. 457, 999, Feb. 2009.
doi:10.1038/nature07766
51. Soukoulis, C. M. and M. Wegener, "Optical metamaterials --- More bulky and less lossy," Science, Vol. 330, 1633, Dec. 2010.
doi:10.1126/science.1198858
52. Pawlak, D. A., S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, and , "How far are we from making metamaterials by self organization? The microstructure of highly anisotropic particles with an SRR-like geometry," Adv. Func. Mater., Vol. 20, 116, Apr. 2010.
53. Chen, H., "Metamaterials: Constitutive parameters, performance, and chemical methods for realization," J. Mater. Chem., Vol. 21, 6452, Mar. 2011.
doi:10.1039/c0jm03138k
54. Vignolini, S., N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Ste¯k, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, "A 3D optical metamaterial made by self-assembly," Adv. Mater., Vol. 24, OP23, Mar. 2012.
55. Sha, X. W., E. N. Economou, D. A. Papaconstantopoulos, M. R. Pederson, M. J. Mehl, and M. Kafesaki, "Possible molecular bottom-up approach to optical metamaterials," Phys. Rev. B, Vol. 86, 115404, Sep. 2012.
doi:10.1103/PhysRevB.86.115404
56. Chen, W.-C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely subwavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, 201104(R), May 2012.