Vol. 47
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-02
On Negative Index Metamaterial Spacers and Their Unusual Optical Properties
By
Progress In Electromagnetics Research B, Vol. 47, 203-217, 2013
Abstract
We theoretically investigate the possibility of using a metamaterial structure as a spacer, named as metaspacer, which can be integrated with other materials in microfabrication. We show that such metaspacers can provide new optical behaviors that are not possible through conventional spacers. In particular, we investigate negative index metaspacers embedded in fishnet metamaterial structures and compare them with conventional fishnet metamaterial structures. We show that the negative index metaspacer based fishnet structure exhibits intriguing inverted optical response. We also observe that the dependence of the resonance frequency on the geometric parameters is reversed. We conclude with practicality of these metaspacers.
Citation
Muhammad I. Aslam, and Durdu Oe Guney, "On Negative Index Metamaterial Spacers and Their Unusual Optical Properties," Progress In Electromagnetics Research B, Vol. 47, 203-217, 2013.
doi:10.2528/PIERB12111908
References

1. Schuster, A., An Introduction to the Theory of Optics, Edward Arnold, London, 1904.

2. Pocklington, H. C., "Growth of a wave-group when the group-velocity is negative," Nature, Vol. 71, No. 1852, 607-608, Apr. 1905.
doi:10.1038/071607b0        Google Scholar

3. Malyuzhinets, G. D., "A note on the radiation principle," Zh. Tekh. Fiz., Vol. 21, 940-942, 1951.        Google Scholar

4. Sivukhin, D. V., "The energy of electromagnetic waves in dispersive media," Opt. Spetrosk., Vol. 3, 308-312, 1957.        Google Scholar

5. Veselago, V. G., "The electrodynamics of substances with simulataneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, Jan.-Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

6. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, No. 22, 4785-4809, Jun. 1998.
doi:10.1088/0953-8984/10/22/007        Google Scholar

7. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773        Google Scholar

8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002        Google Scholar

9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847        Google Scholar

10. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity ," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

11. Soukoulis, C. M., S. Linden, and M.Wegener, "Negative refractive index at optical wavelengths," Science, Vol. 315, 47-49, Jan. 2007.
doi:10.1126/science.1136481        Google Scholar

12. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nat. Photonics, Vol. 5, 523-530, Jul. 2011.        Google Scholar

13. Shalaev, V. M., "Optical negative-index metamaterials," Nat. Photonics, Vol. 1, 41-48, Jan. 2007.
doi:10.1038/nphoton.2006.49        Google Scholar

14. Jakšic, Z., N. Dalarsson, and M. Maksimovic, "Negative refractive index metamaterials: Principles and applications," Microwave Review, Vol. 12, No. 1, 36-49, Jun. 2006.        Google Scholar

15. Xu, T., Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, "Sub-diffraction-limited interference photolithography with metamaterials," Opt. Express, Vol. 16, 13579-13584, Sep. 2008.
doi:10.1364/OE.16.013579        Google Scholar

16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, Oct. 2000.        Google Scholar

17. Koschny, T., R. Moussa, and C. M. Soukoulis, "Limits on the amplification of evanescent waves of left-handed materials," J. Opt. Soc. Am. B, Vol. 23, 485-489, Mar. 2006.
doi:10.1364/JOSAB.23.000485        Google Scholar

18. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006.        Google Scholar

19. Bulu, I., H. Caglayan, K. Aydin, and E. Ozbay, "Compact size highly directive antennas based on the SRR metamaterial medium," New J. Phys., Vol. 7, 223, Oct. 2005.        Google Scholar

20. Güney, D. Ö. and D. A. Meyer, "Negative refraction gives rise to the Klein paradox," Phys. Rev. A, Vol. 79, 063834, Jun. 2009.
doi:10.1103/PhysRevA.79.063834        Google Scholar

21. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys., Vol. 5, 687-692, Jul. 2009.        Google Scholar

22. Leonhardt, U. and T. G. Philbin, "Quantum levitation by left-handed metamaterials," New J. of Phys., Vol. 9, 254, Aug. 2007.
doi:10.1088/1367-2630/9/8/254        Google Scholar

23. Xi, J. Q., M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection ," Nat. Photonics, Vol. 1, No. 3, 176-179, Mar. 2007.        Google Scholar

24. Olivier, A., "Permeability enhancement of soft magnetic films through metamaterial structures ," J. Magnetism and Magnetic Materials, Vol. 320, No. 23, 3276-3281, Dec. 2008.
doi:10.1016/j.jmmm.2008.06.039        Google Scholar

25. Ruppin, R., "Surface polaritons of a left-handed material slab," J. of Phys.: Condensed Matter, Vol. 13, No. 9, 1811-1819, Mar. 2001.
doi:10.1088/0953-8984/13/9/304        Google Scholar

26. Darmanyan, S. A., M. Neviµere, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Comm., Vol. 225, No. 4-6, 233-240, Sep. 2003.
doi:10.1016/j.optcom.2003.07.047        Google Scholar

27. Dolling, G., M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett., Vol. 32, 551-553, Mar. 2007.
doi:10.1364/OL.32.000551        Google Scholar

28. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nat. Photonics, Vol. 6, 259, Mar. 2012.
doi:10.1038/nphoton.2012.27        Google Scholar

29. Smith, D. R., S. Schultz, P. Markoscaron, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, May 2002.
doi:10.1103/PhysRevB.65.195104        Google Scholar

30. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

31. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial ," Science, Vol. 312, 892-894, May 2006.
doi:10.1126/science.1126021        Google Scholar

32. Woodley, J. F. and M. Mojahedi, "Negative group velocity and group delay in left-handed media," Phys. Rev. E, Vol. 70, 046603, Oct. 2004.        Google Scholar

33. Zhou, J., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index response of weakly and strongly coupled optical metamaterials," Phys. Rev. B, Vol. 80, 035109.        Google Scholar

34. Ortuño, R., C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, "Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays," Phys. Rev. B, Vol. 79, 075425, Feb. 2009.
doi:10.1103/PhysRevB.79.075425        Google Scholar

35. Iwanaga, M., "First-principle analysis for electromagnetic eigen modes in a an optical metamaterial slab," Progress In Electromagetics Research, Vol. 132, 129-148, 2012.        Google Scholar

36. Belov, P. A., R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretryakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Phys. Rev. B, Vol. 67, 113103, Mar. 2003.
doi:10.1103/PhysRevB.67.113103        Google Scholar

37. Maslovski, S. I. and M. G. Silveirinha, "Nonlocal permittivity rom a quasistatic model for a class of wire media," Phys. Rev. B, Vol. 80, 245101, Dec. 2009.
doi:10.1103/PhysRevB.80.245101        Google Scholar

38. Silveirinha, M. G. and P. A. Belov, "Spatial dispersion in lattices of split ring resonators with permeability near zero," Phys. Rev. B, Vol. 77, 233104, Jun. 2008.
doi:10.1103/PhysRevB.77.233104        Google Scholar

39. Menzel, C., C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for metamaterials at oblique incidence," Phys. Rev. B, Vol. 77, 195328, May 2008.
doi:10.1103/PhysRevB.77.195328        Google Scholar

40. Aslam, M. I. and D. Ö. Güney, "Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum," J. Opt. Soc. Am. B, Vol. 29, 2839-2847, Oct. 2012.        Google Scholar

41. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376, Aug. 2008.
doi:10.1038/nature07247        Google Scholar

42. Paniagua-Dominguez, R., D. R. Abujetas, and J. A. Sanchez-Gil, "Ultra low-loss isotropic 2D optical negative index metamaterial based on hybrid metal-semiconductor nanowires," arXiv: 1210.8410, 2012..        Google Scholar

43. Govyadinov, A. A., V. A. Podolskiy, and M. A. Noginov, "Active metamaterials: Sign of refractive index and gain-assisted dispersion management," Appl. Phys. Lett., Vol. 91, 191103-3, Nov. 2007.        Google Scholar

44. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, No. 7307, 735-738, Aug. 2010.
doi:10.1038/nature09278        Google Scholar

45. Fang, A., T. Koschny, and C. M. Soukoulis, "Self consistent calculations of loss-compensated fishnet metamaterials," Phys. Rev. B, Vol. 82, 121102, Sep. 2010.
doi:10.1103/PhysRevB.82.121102        Google Scholar

46. Wuestner, S., A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, "Overcoming losses with gain in a negative refractive index metamaterial," Phys. Rev. Lett., Vol. 105, 127401, Sep. 2010.
doi:10.1103/PhysRevLett.105.127401        Google Scholar

47. Xu, W., W. J. Padilla, and S. Sonkusale, "Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits ," Opt. Express, Vol. 20, 22406, Sep. 2012.
doi:10.1364/OE.20.022406        Google Scholar

48. Whitesides, G. M. and B. Grzybowski, "Self-assembly at all scales," Science, Vol. 295, 2418, Mar. 2002.
doi:10.1126/science.1070821        Google Scholar

49. Rockstuhl, C., F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, "Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of electromagnetic spectrum," Phys. Rev. Lett., Vol. 99, 017401, Jul. 2007.        Google Scholar

50. Erb, R. M., H. S. Son, B. Samanta, V. M. Rotello, and B. B. Yellen, "Magnetic assembly of colloidal superstructures with multipole symmetry," Nature, Vol. 457, 999, Feb. 2009.
doi:10.1038/nature07766        Google Scholar

51. Soukoulis, C. M. and M. Wegener, "Optical metamaterials --- More bulky and less lossy," Science, Vol. 330, 1633, Dec. 2010.
doi:10.1126/science.1198858        Google Scholar

52. Pawlak, D. A., S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, and , "How far are we from making metamaterials by self organization? The microstructure of highly anisotropic particles with an SRR-like geometry," Adv. Func. Mater., Vol. 20, 116, Apr. 2010.        Google Scholar

53. Chen, H., "Metamaterials: Constitutive parameters, performance, and chemical methods for realization," J. Mater. Chem., Vol. 21, 6452, Mar. 2011.
doi:10.1039/c0jm03138k        Google Scholar

54. Vignolini, S., N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Ste¯k, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, "A 3D optical metamaterial made by self-assembly," Adv. Mater., Vol. 24, OP23, Mar. 2012.        Google Scholar

55. Sha, X. W., E. N. Economou, D. A. Papaconstantopoulos, M. R. Pederson, M. J. Mehl, and M. Kafesaki, "Possible molecular bottom-up approach to optical metamaterials," Phys. Rev. B, Vol. 86, 115404, Sep. 2012.
doi:10.1103/PhysRevB.86.115404        Google Scholar

56. Chen, W.-C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely subwavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, 201104(R), May 2012.        Google Scholar