1. Ihlenburg, F. and I. Babuska, "Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of FEM," Comp. Math. Appl., Vol. 30, No. 9, 9-37, 1995.
doi:10.1016/0898-1221(95)00144-N Google Scholar
2. Harari, I. and T. J. R. Hughes, "Finite element method for the Helmholtz equation in an exterior domain: Model problems," Comp. Meth. Appl. Mech. Eng., Vol. 87, 59-96, 1991.
doi:10.1016/0045-7825(91)90146-W Google Scholar
3. Harari, I. and T. J. R. Hughes, "Galerkin/least squares finite element method for the reduced wave equation with non-reflecting boundary conditions," Comp. Meth. Appl. Mech. Eng., Vol. 92, 441-454, 1992. Google Scholar
4. Babuska, I., F. Ihlenburg, E. Paik, and S. Sauter, "A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution," Comp. Meth. Appl. Mech. Eng., Vol. 128, 325-359, 1995.
doi:10.1016/0045-7825(95)00890-X Google Scholar
5. Farhat, C., I. Harari, and L. P. Franca, "The discontinuous enrichment method," Comp. Meth. Appl. Mech. Eng., Vol. 190, 6455-6479, 2001.
doi:10.1016/S0045-7825(01)00232-8 Google Scholar
6. Zienkiewicz, O. C., "Achievements and some unsolved problems of the finite element method," Int. J. Numer. Meth. Engrg., Vol. 47, 9-28, 2000.
doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P Google Scholar
7. Ooi, B. L. and G. Zhao, "Element-free method for the analysis of partially-filled dielectric waveguides," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 189-198, 2007.
doi:10.1163/156939307779378772 Google Scholar
8. Miao, Y., Y. Wang, and H. Wang, "A meshless hybrid boundary-node method for Helmholtz problems," Eng. Anal. Boundary Elem, Vol. 33, 120-127, 2009.
doi:10.1016/j.enganabound.2008.05.009 Google Scholar
9. Correa, B. C., E. J. Silva, A. R. Fonseca, D. B. Oliveria, and R. C. Mesquita, "Meshless local Petrov-Galerkin in solving microwave guide problems," IEEE Trans. Magnetics, Vol. 47, 1526-1529, 2011.
doi:10.1109/TMAG.2010.2091496 Google Scholar
10. Belytschko, T., Y. Y. Lu, and L. Gu, "Element-free Galerkin methods," Int. J. Numer. Meth. Engrg., Vol. 37, 229-256, 1994.
doi:10.1002/nme.1620370205 Google Scholar
11. Liu, W. K., S. Jun, and Y. F. Zhan, "Reproducing kernel particle methods," Int. J. Numer. Meth. Fluids, Vol. 20, 1081-1106, 1995.
doi:10.1002/fld.1650200824 Google Scholar
12. Kansa, E. J., "Multiqudrics --- A scattered data approximation scheme with applications to computational fluid-dynamics --- I: Surface approximations and partial derivatives," Comp. Math. Appl., Vol. 9, 127-145, 1992. Google Scholar
13. Jiang, P. L., S. Q. Li, and C. H. Chan, "Analysis of elliptic waveguides by a meshless collocation method with the Wendland adial basis functions," Microwave and Optical Technology Letters, Vol. 32, No. 2, 162-165, 2002.
doi:10.1002/mop.10119 Google Scholar
14. Lai, S. J., B. Z. Wang, and Y. Duan, "Solving Helmholtz equation by meshless radial basis functions method," Progress In Electromagnetics Research B, Vol. 24, 351-367, 2010.
doi:10.2528/PIERB10062303 Google Scholar
15. Kaufmann, T., Y. Yu, C. Engstrom, Z. Chen, and C. Fumeaux, "Recent developments of meshless radial point interpolation method for time-domain electromagnetics," Int. J. Numer. Model: Elect. Networks, Devices and Fields, Vol. 25, 468-489, 2012.
doi:10.1002/jnm.1830 Google Scholar
16. Wu, C. T., C. K. Park, and J. S. Chen, "A generalized meshfree approximation for the meshfree analysis of solids," Int. J. Numer. Meth. Engrg., Vol. 85, 693-722, 2011.
doi:10.1002/nme.2991 Google Scholar
17. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90, 2nd Ed., Cambridge University Press, New York, 1996.
18. Harrington, R. F., Time-harmonic Electromagnetic Fields, Wiley-IEEE Press, New York, 2001.
doi:10.1109/9780470546710
19. Marcuvitz, N., Waveguide Handbook, Peter Peregrinus Ltd., London, 1993.
20. Shaw, A. and D. Roy, "NURBS-based parametric mesh-free methods," Comput. Methods Appl. Mech. Engrg., Vol. 197, 1541-1567, 2008.
doi:10.1016/j.cma.2007.11.024 Google Scholar