Vol. 49
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-02-22
Data-Driven Polinsar Unsupervised Classification Based on Adaptive Model-Based Decomposition and Shannon Entropy Characterization
By
Progress In Electromagnetics Research B, Vol. 49, 215-234, 2013
Abstract
We introduce a data-driven unsupervised classification algorithm that uses polarimetric and interferometric synthetic aperture radar (PolInSAR) data. The proposed algorithm uses a classification method that preserves scattering characteristics. Our contribution is twofold. First, the method applies adaptive model-based decomposition (AMD) to represent the scattering mechanism, which overcomes the flaws introduced by Freeman decomposition. Second, a new class initialization scheme using a histogram clustering algorithm based on a Dirichlet process mixture model is applied to automatically determine the number of clusters and effectively initialize the classes. Therefore, our algorithm is data-driven. In the first step, the Shannon entropy characteristics of the PolInSAR data are extracted and used to calculate the local histogram features. After applying AMD, pixels are divided into three canonical scattering categories according to their dominant scattering mechanism. The histogram clustering algorithm is applied to each scattering category to obtain the number of classes and initialize them. The iterative Wishart classifier is applied to refine the classification results. Our method not only can obtain promising unsupervised classification results but also can automatically assign the number of classes. Experimental results for E-SAR L-band PolInSAR images from the German Aerospace Center demonstrate the effectiveness of the proposed algorithm.
Citation
Hui Song, Wen Yang, Xin Xu, and Mingsheng Liao, "Data-Driven Polinsar Unsupervised Classification Based on Adaptive Model-Based Decomposition and Shannon Entropy Characterization," Progress In Electromagnetics Research B, Vol. 49, 215-234, 2013.
doi:10.2528/PIERB13012302
References

1. Kong, J. A., S. H. Yueh, H. H. Lim, R. T. Shin, and J. J. Van Zyl, "Classification of earth terrain using polarimetric synthetic aperture radar images," Progress In Electromagnetics Research, Vol. 3, 327-370, 1990.

2. Lee, J., M. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex wishart distribution," International Journal of Remote Sensing, Vol. 15, No. 11, 2299-2311, 1994.
doi:10.1080/01431169408954244

3. Ferro-Famil, L. and E. Pottier, "Dual frequency polarimetric SAR data classification and analysis," Progress In Electromagnetics Research, Vol. 31, 247-272, 2001.
doi:10.2528/PIER00081601

4. Jin, Y.-Q., "Polarimetric scattering modeling and information retrieval of SAR remote sensing --- A review of FDU work," Progress In Electromagnetics Research, Vol. 104, 333-384, 2010.
doi:10.2528/PIER10020101

5. Goodman, N., "Statistical analysis based on a certain multivariate complex gaussian distribution (an introduction)," Annals of Mathematical Statistics, 152-177, 1963.
doi:10.1214/aoms/1177704250

6. Cloude, S. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 1, 68-78, 1997.
doi:10.1109/36.551935

7. Lee, J., M. Grunes, T. Ainsworth, L. Du, D. Schuler, and S. Cloude, "Unsupervised classification using polarimetric decomposition and the complex wishart classifier," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2249-2258, 1999.
doi:10.1109/36.789621

8. Pottier, E. and J. Lee, "Unsupervised classification scheme of polsar images based on the complex wishart distribution and the H/A/alpha polarimetric decomposition theorem (polarimetric sar)," EUSAR 2000, 265-268, 2000.

9. Van Zyl, J., "Unsupervised classification of scattering behavior using radar polarimetry data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 27, No. 1, 36-45, 1989.
doi:10.1109/36.20273

10. Ferro-Famil, L., E. Pottier, and J. Lee, "Unsupervised classification of natural scenes from polarimetric interferometric SAR data," Frontiers of Remote Sensing Information Processing, 105, 2003.
doi:10.1142/9789812796752_0006

11. Ferro-Famil, L., E. Pottier, H. Skriver, P. Lumsdon, R. Moshammer, and K. Papathanassiou, "Forest mapping and classification using L-band polinSAR data," ESA Special Publication, Vol. 586, 9, 2005.

12. Cloude, S. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 2, 498-518, 1996.
doi:10.1109/36.485127

13. Lee, J., M. Grunes, E. Pottier, and L. Ferro-Famil, "Unsupervised terrain classification preserving polarimetric scattering characteristics," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 4, 722-731, 2004.
doi:10.1109/TGRS.2003.819883

14. Freeman, A. and S. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, 963-973, 1998.
doi:10.1109/36.673687

15. Yang, W., T. Zou, H. Sun, and X. Xu, "Improved unsupervised classification based on freeman-durden polarimetric decomposition," EUSAR 2008, 7th European Conference on Synthetic Aperture Radar, 1-4, VDE, 2008.

16. Van Zyl, J., M. Arii, and Y. Kim, "Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 9, 3452-3459, 2011.
doi:10.1109/TGRS.2011.2128325

17. Arii, M., J. Van Zyl, and Y. Kim, "Adaptive model-based decomposition of polarimetric SAR covariance matrices," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 3, 1104-1113, 2011.
doi:10.1109/TGRS.2010.2076285

18. Orbanz, P. and J. Buhmann, "Nonparametric Bayesian image segmentation," International Journal of Computer Vision, Vol. 77, No. 1, 25-45, 2008.
doi:10.1007/s11263-007-0061-0

19. Morio, J., P. Refregier, F. Goudail, P. Dubois-Fernandez, and X. Dupuis, "Information theory-based approach for contrast analysis in polarimetric and/or interferometric SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 8, 2185-2196, 2008.
doi:10.1109/TGRS.2008.926115

20. Morio, J., P. Refregier, F. Goudail, P. Dubois-Fernandez, and X. Dupuis, "A characterization of shannon entropy and Bhattacharyya measure of contrast in polarimetric and interferometric SAR image," Proceedings of the IEEE, Vol. 97, No. 6, 1097-1108, 2009.
doi:10.1109/JPROC.2009.2017107

21. Van Zyl, J., "Application of cloude's target decomposition theorem to polarimetric imaging radar data," Proc. SPIE 1748, Radar Polarimetry, 184-191, International Society for Optics and Photonics, 1993.

22. Refregier, P., F. Goudail, P. Chavel, and A. Friberg, "Entropy of partially polarized light and application to statistical processing techniques," Journal of the Optical Society of America A (JOSA A), Vol. 21, No. 11, 2124-2134, 2004.
doi:10.1364/JOSAA.21.002124

23. Cloude, S. and K. Papathanassiou, "Polarimetric SAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1551-1565, 1998.
doi:10.1109/36.718859

24. Neal, R., "Markov chain sampling methods for dirichlet process mixture models," Journal of Computational and Graphical Statistics, Vol. 9, No. 2, 249-265, 2000.

25. Rosenberg, A. and J. Hirschberg, "V-measure: A conditional entropy-based external cluster evaluation measure," Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), Vol. 410, 420, 2007.